login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008659
Theta series of direct sum of 3 copies of D_4 lattice.
1
1, 72, 1800, 17568, 57096, 225072, 439200, 1210176, 1826568, 4269096, 5626800, 11595744, 13931424, 26733168, 30254400, 54917568, 58449672, 102229776, 106727400, 178279200, 178482096, 295282944, 289893600, 463416768, 445682592
OFFSET
0,2
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 119.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 116, equation (4).
FORMULA
Expansion of (8 * E_6(x^2) - E_6(x)) / 7 in powers of x where E_6() is an Eisenstein series.
MATHEMATICA
terms = 25; E6[q_] = 1 - 504 Sum[k^5 q^(2 k)/(1 - q^(2 k)), {k, 1, terms}]; s = (8*E6[q^2] - E6[q])/7 + O[q]^(2 terms); CoefficientList[s, q^2][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 72 * (sigma( n, 5) - if( n%2, 0, 8 * sigma( n/2, 5))))} /* Michael Somos, Jul 16 2004 */
CROSSREFS
Sequence in context: A234209 A280807 A268749 * A263974 A344029 A187303
KEYWORD
nonn,easy
STATUS
approved