login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Quarter-squares repeated.
21

%I #116 Apr 07 2023 11:27:09

%S 1,1,2,2,4,4,6,6,9,9,12,12,16,16,20,20,25,25,30,30,36,36,42,42,49,49,

%T 56,56,64,64,72,72,81,81,90,90,100,100,110,110,121,121,132,132,144,

%U 144,156,156,169,169,182,182,196,196,210,210,225,225

%N Quarter-squares repeated.

%C The area of the largest rectangle whose perimeter is not greater than n. - _Dmitry Kamenetsky_, Aug 30 2006

%C Also number of partitions of n into parts 1, 2 or 4. - _Reinhard Zumkeller_, Aug 12 2011

%C Let us consider a rectangle composed of unit squares. Then count how many squares are necessary to surround this rectangle by a layer whose width is 1 unit. And repeat this surrounding ad libitum. This sequence, prepended by 4 zeros and with offset 0, gives the number of rectangles that need 2*n unit squares in one of their surrounding layers. - _Michel Marcus_, Sep 19 2015

%C a(n) is the number of nonnegative integer solutions (x,y,z) for n-2 <= 2*x + 3*y + 4*z <= n. For example, the two solutions for 1 <= 2*x + 3*y + 4*z <= 3 are (1,0,0) and (0,1,0). - _Ran Pan_, Oct 07 2015

%C Conjecture: Consider the number of compositions of n>=4*k+8 into odd parts, where the order of the parts 1,3,..,2k+1 does not count. Then, as k approaches infinity, a(n-4*k-8) is equal to the number of these restricted compositions minus A000009(n), the number of strict partitions of n. - _Gregory L. Simay_, Aug 12 2016

%C From _Gus Wiseman_, May 17 2019: (Start)

%C Also the number of length-3 integer partitions of n + 4 whose largest part is greater than the sum of the other two. These are unordered triples that cannot be the sides of a triangle. For example, the a(1) = 1 through a(10) = 9 partitions are (A = 10, B = 11, C = 12):

%C (311) (411) (421) (521) (522) (622) (632) (732) (733) (833)

%C (511) (611) (531) (631) (641) (741) (742) (842)

%C (621) (721) (722) (822) (751) (851)

%C (711) (811) (731) (831) (832) (932)

%C (821) (921) (841) (941)

%C (911) (A11) (922) (A22)

%C (931) (A31)

%C (A21) (B21)

%C (B11) (C11)

%C (End)

%C This sequence, prepended by four 0's and with offset 0, is the number of partitions of n into four parts whose smallest two parts are equal. - _Wesley Ivan Hurt_, Jan 05 2021

%C This sequence, prepended by four 0's and with offset 0, is the number of incongruent obtuse triangles formed from the vertices of a regular n-gon. - _Frank M Jackson_, Nov 27 2022

%D D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 112, D(n).

%H Vincenzo Librandi, <a href="/A008642/b008642.txt">Table of n, a(n) for n = 0..1000</a>

%H Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson, <a href="https://arxiv.org/abs/1905.00975">Asymptotic normality of the major index on standard tableaux</a>, arXiv:1905.00975 [math.CO], 2019.

%H Ran Pan, <a href="http://www.math.ucsd.edu/~projectp/warmups/eU.html">Exercise U</a>, Project P.

%H Harold N. Ward, <a href="https://arxiv.org/abs/2201.00389">A Normal Graph Algebra</a>, arXiv:2201.00389 [math.CO], 2022.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1,-1,1).

%F G.f.: 1/((1-x)*(1-x^2)*(1-x^4)).

%F a(n) = (2*n^2 + 14*n + 21 + (2*n + 7)*(-1)^n)/32 + ((1 + (-1)^n)/2 - (1 - (-1)^n)*i/2)*i^n/8, with i = sqrt(-1).

%F a(n) = floor(((n+1)*((-1)^n+n+6)+9)/16). - _Tani Akinari_, Jun 16 2013

%F a(n) = Sum_{i=1..floor((n+6)/2)} floor((n+6-2*i-(n mod 2))/4). - _Wesley Ivan Hurt_, Mar 31 2014

%F a(0)=1, a(1)=1, a(2)=2, a(3)=2, a(4)=4, a(5)=4, a(6)=6; for n>6, a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7). - _Harvey P. Dale_, Jun 03 2015

%F a(n) = floor(floor(n/2+2)^2/4) = floor(floor(n/2+2)^2/2)/2. - _Bruno Berselli_, Mar 03 2016

%F E.g.f.: ((14 + 7*x + x^2)*cosh(x) + 2*(cos(x) + sin(x)) + (7 + 9*x + x^2)*sinh(x))/16. - _Stefano Spezia_, Mar 05 2023

%F a(n) = floor((n + 4)/4)*floor((n + 6)/4). - _Ridouane Oudra_, Apr 01 2023

%p seq((7/8+(-1)^k/8 + k + k^2/4)$2, k=0..100); # _Robert Israel_, Oct 08 2015

%t CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)), {x, 0, 70}], x] (* _Vincenzo Librandi_, Apr 02 2014 *)

%t LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,2,2,4,4,6}, 70] (* _Harvey P. Dale_, Jun 03 2015 *)

%t Table[Floor[((n + 1) ((-1)^n + n + 6) + 9)/16], {n, 0, 70}] (* _Michael De Vlieger_, Aug 14 2016 *)

%o (PARI) Vec(1/((1-x)*(1-x^2)*(1-x^4)) + O(x^70)) \\ _Michel Marcus_, Mar 31 2014

%o (PARI) vector(70, n, n--; floor(((n+1)*((-1)^n+n+6)+9)/16)) \\ _Altug Alkan_, Oct 08 2015

%o (Magma) [Floor(((n+1)*((-1)^n+n+6)+9)/16): n in [0..70]]; // _Vincenzo Librandi_, Apr 02 2014

%o (Sage) [floor(floor(n/2+2)^2/2)/2 for n in (0..70)] # _Bruno Berselli_, Mar 03 2016

%Y Cf. A002620.

%Y Cf. A001399, A005044 (triangles without self-intersections), A069905, A124278, A266223, A325686, A325689, A325690, A325691, A325695.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_