login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Molien series for alternating group Alt_12 (or A_12).
2

%I #22 Sep 08 2022 08:44:36

%S 1,1,2,3,5,7,11,15,22,30,42,56,77,100,133,172,224,285,366,460,582,725,

%T 905,1116,1380,1686,2063,2503,3036,3655,4401,5262,6290,7476,8877,

%U 10489,12384,14552,17084,19978,23334,27156,31570,36578,42333,48849

%N Molien series for alternating group Alt_12 (or A_12).

%D D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

%H Sean A. Irvine, <a href="/A008635/b008635.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Mo#Molien">Index entries for Molien series</a>

%H <a href="/index/Rec#order_72">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 0, 0, -1, 1, -2, -1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, -1, -2, -3, -3, -1, -1, 1, 0, 3, 4, 3, 3, 1, 2, -2, -3, -3, -4, -3, -3, -2, 2, 1, 3, 3, 4, 3, 0, 1, -1, -1, -3, -3, -2, -1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, -1, -2, 1, -1, 0, 0, 1, 1, -1).

%F G.f.: (1+x^66)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^9)*(1-x^10)*(1-x^11)*(1-x^12)).

%p seq(coeff(series( (1+x^66)/mul((1-x^j), j=1..12)), x, n+1), x, n), n = 0..50); # _G. C. Greubel_, Feb 02 2020

%t CoefficientList[Series[(1+x^66)/Product[(1-x^j), {j,12}], {x,0,50}], x] (* _G. C. Greubel_, Feb 02 2020 *)

%o (PARI) Vec( (1+x^66)/prod(j=1,12, 1-x^j) +O('x^50) ) \\ _G. C. Greubel_, Feb 02 2020

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^66)/(&*[1-x^j: j in [1..12]]) )); // _G. C. Greubel_, Feb 02 2020

%o (Sage)

%o def A008631_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x^66)/product(1-x^j for j in (1..12)) ).list()

%o A008631_list(70) # _G. C. Greubel_, Feb 02 2020

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Apr 01 2018