login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiples of 22.
10

%I #53 May 19 2024 20:58:39

%S 0,22,44,66,88,110,132,154,176,198,220,242,264,286,308,330,352,374,

%T 396,418,440,462,484,506,528,550,572,594,616,638,660,682,704,726,748,

%U 770,792,814,836,858,880,902,924,946,968,990

%N Multiples of 22.

%C Even numbers for which the sum of "digits" base 100 is divisible by 11. - _Daniel Forgues_, Feb 22 2016

%H Vincenzo Librandi, <a href="/A008604/b008604.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=334">Encyclopedia of Combinatorial Structures 334</a>

%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).

%F G.f.: 22*x/(x-1)^2. - _Vincenzo Librandi_, Jun 10 2013

%F a(n) = A008593(2n). - _Daniel Forgues_, Feb 22 2016

%F From _Wesley Ivan Hurt_, May 19 2024: (Start)

%F a(n) = 22*n.

%F a(n) = 2*a(n-1) - a(n-2). (End)

%t Range[0, 1500, 22] (* _Vladimir Joseph Stephan Orlovsky_, Jun 01 2011 *)

%t CoefficientList[Series[22 x / (x - 1)^2, {x, 0, 60}], x] (* _Vincenzo Librandi_, Jun 10 2013 *)

%t LinearRecurrence[{2,-1},{0,22},50] (* _Harvey P. Dale_, Aug 06 2018 *)

%o (PARI) a(n)=22*n \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A008593, A008602, A008603.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_