login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Multiples of 16.
28

%I #53 Jul 16 2022 01:25:37

%S 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224,240,256,272,288,

%T 304,320,336,352,368,384,400,416,432,448,464,480,496,512,528,544,560,

%U 576,592,608,624,640,656,672,688,704,720,736,752,768,784,800,816,832

%N Multiples of 16.

%C If X is an n-set and Y_i (i=1,2,3,4) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3,4). - _Milan Janjic_, Aug 26 2007

%H Vincenzo Librandi, <a href="/A008598/b008598.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=328">Encyclopedia of Combinatorial Structures 328</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.

%H Leo Tavares, <a href="/A008598/a008598.jpg">Illustration: Square Block Star Frames</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = Sum_{k=1..8n} (i^k+1)*(i^(8n-k)+1), where i=sqrt(-1). - _Bruno Berselli_, Mar 19 2012

%F G.f.: 16*x/(x-1)^2. - _Vincenzo Librandi_, Jun 10 2013

%F a(n) = A014641(n) - A185212(n). - _Leo Tavares_, May 24 2022

%p A008598:=n->16*n; seq(A008598(n), n=0..100); # _Wesley Ivan Hurt_, Nov 13 2013

%t Range[0, 1000, 16] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)

%t CoefficientList[Series[16 x / (x - 1)^2, {x, 0, 60}], x] (* _Vincenzo Librandi_ Jun 10 2013 *)

%o (PARI) a(n)=16*n \\ _Charles R Greathouse IV_, Sep 24 2015

%Y Cf. A008596, A008597.

%Y Cf. A014641, A185212.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_