OFFSET
0,2
COMMENTS
Growth series of the affine Weyl group of type A8. - Paul E. Gunnells, Jan 06 2017
REFERENCES
R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = n*(3044 + 1869*n^2 + 126*n^4 + n^6)/560 for n>0. - Colin Barker, Jan 06 2017
E.g.f.: 1 + x*(5040 + 7560*x + 5320*x^2 + 1610*x^3 + 266*x^4 + 21*x^5 + x^6)*exp(x)/560. - G. C. Greubel, Nov 07 2019
MAPLE
1, seq(n*(3044+1869*n^2+126*n^4+n^6)/560, n=1..40); # G. C. Greubel, Nov 07 2019
MATHEMATICA
CoefficientList[Series[(1-x^9)/(1-x)^9, {x, 0, 35}], x] (* Harvey P. Dale, May 04 2014 *)
PROG
(PARI) Vec((1-x^9 )/(1-x)^9 + O(x^35)) \\ Colin Barker, Jan 06 2017
(Magma) [1] cat [n*(3044+1869*n^2+126*n^4+n^6)/560: n in [1..40]]; // G. C. Greubel, Nov 07 2019
(Sage) [1]+[n*(3044+1869*n^2+126*n^4+n^6)/560 for n in (1..40)] # G. C. Greubel, Nov 07 2019
(GAP) Concatenation([1], List([1..40], n-> n*(3044+1869*n^2+126*n^4+n^6)/560 )); # G. C. Greubel, Nov 07 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved