Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Sep 08 2022 08:44:35
%S 1,20,30,60,60,120,40,180,150,140,130,240,180,360,120,260,220,480,210,
%T 400,360,240,360,660,200,620,240,600,540,600,240,640,630,720,320,780,
%U 420,1080,600,480,650,840,360,1260,720,840,440,1380,660,860,630,640,1080,1560,400
%N Theta series of A_4 lattice.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.
%H John Cannon, <a href="/A008444/b008444.txt">Table of n, a(n) for n = 0..5000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A4.html">Home page for this lattice</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of f(-x)^5 / f(-x^5) + 25 * x * f(-x^5)^5 / f(-x) in powers of x where f() is a Ramanujan theta function. - _Michael Somos_, Feb 06 2011
%F Expansion of (1 / Pi) integral_{0 .. Pi/2} theta_3(z, q)^5 + theta_4(z, q)^5 dz in powers of q^2. - _Michael Somos_, Jan 01 2012
%F Coefficient of x^0 in the expansion f(x * q, q / x)^5 in powers of q^2 where f() is a Ramanujan theta function. - _Michael Somos_, Jan 01 2012
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 5^(3/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A023916. - _Michael Somos_, Feb 06 2011
%F A023916(5*n) = a(n) for all n in Z.
%e G.f. = 1 + 20*x + 30*x^2 + 60*x^3 + 60*x^4 + 120*x^5 + 40*x^6 + 180*x^7 + ...
%e G.f. = 1 + 20*q^2 + 30*q^4 + 60*q^6 + 60*q^8 + 120*q^10 + 40*q^12 + 180*q^14 + 150*q^16 + 140*q^18 + 130*q^20 + 240*q^22 + 180*q^24 + 360*q^26 + 120*q^28 + 260*q^30 + 220*q^32 + 480*q^34 + 210*q^36 + 400*q^38 + 360*q^40 + 240*q^42 + 360*q^44 + 660*q^46 + 200*q^48 + 620*q^50 + ...
%t a[ n_] := With[ {u1 = QPochhammer[ x], u5 = QPochhammer[ x^5]}, SeriesCoefficient[ u1^5/u5 + 25 x u5^5/u1, {x, 0, n}]]; (* _Michael Somos_, Nov 13 2014 *)
%t terms = 55; f[q_] = LatticeData["A4", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] (* _Jean-François Alcover_, Jul 04 2017 *)
%o (Magma) L := Lattice("A", 4); A<q> := ThetaSeries(L, 120); A;
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^5 / eta(x^5 + A) + 25 * x * eta(x^5 + A)^5 / eta(x + A), n))}; /* _Michael Somos_, Feb 06 2011 */
%o (Magma) A := Basis( ModularForms( Gamma1(5), 2), 55) ; A[1] + 20*A[2] + 30*A[3]; /* _Michael Somos_, Nov 13 2014 */
%Y Cf. A000007, A000122, A004016, A004015, A008445, A008446, A008447, A008448, A008449 (Theta series of lattices A_0, A_1, A_2, A_3, A_5, ...).
%K nonn,nice
%O 0,2
%A _N. J. A. Sloane_