Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Aug 11 2024 23:24:08
%S 1,56,812,5768,26474,91112,256508,623576,1356194,2703512,5025692,
%T 8823080,14768810,23744840,36881420,55599992,81659522,117206264,
%U 164826956,227605448,309182762,413820584,546468188,712832792,919453346
%N Coordination sequence for A_7 lattice.
%H T. D. Noe, <a href="/A008389/b008389.txt">Table of n, a(n) for n = 0..1000</a>
%H M. Baake and U. Grimm, <a href="https://arxiv.org/abs/cond-mat/9706122">Coordination sequences for root lattices and related graphs</a>, arXiv:cond-mat/9706122, 1997; Zeit. f. Kristallographie, 212 (1997), 253-256.
%H R. Bacher, P. de la Harpe and B. Venkov, <a href="https://doi.org/10.1016/S0764-4442(97)83542-2">Séries de croissance et séries d'Ehrhart associées aux réseaux de racines</a>, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H M. O'Keeffe, <a href="http://dx.doi.org/10.1524/zkri.1995.210.12.905">Coordination sequences for lattices</a>, Zeit. f. Krist., 210 (1995), 905-908.
%H M. O'Keeffe, <a href="/A008527/a008527.pdf">Coordination sequences for lattices</a>, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F G.f.: (1+x)*(1+48*x+393*x^2+832*x^3+393*x^4+48*x^5+x^6)/(1-x)^7. - _Colin Barker_, Sep 26 2012
%F a(n) = 2 + n^2*(143*n^4 +770*n^2 +707)/30 with n>0, a(0)=1. - _Bruno Berselli_, Sep 26 2012
%F E.g.f.: -1 + (1/30)*(60 +1620*x +10530*x^2 +17490*x^3 +10065*x^4 +2145*x^5 +143*x^6)*exp(x). - _G. C. Greubel_, May 26 2023
%p 1, seq(2 +n^2*(143*n^4 +770*n^2 +707)/30, n=1..50);
%t Table[n^2*(143*n^4 +770*n^2 +707)/30 +2 -Boole[n==0], {n,0,40}] (* _G. C. Greubel_, May 26 2023 *)
%o (Magma) [1] cat [2 +n^2*(143*n^4 +770*n^2 +707)/30: n in [1..40]]; // _G. C. Greubel_, May 26 2023
%o (SageMath) [2 +n^2*(143*n^4 +770*n^2 +707)/30 -int(n==0) for n in range(41)] # _G. C. Greubel_, May 26 2023
%Y Row 7 of A103881.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_ and _J. H. Conway_