login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Crystal ball sequence for A_5 lattice.
4

%I #26 Apr 08 2018 16:20:33

%S 1,31,271,1281,4251,11253,25493,51563,95693,166003,272755,428605,

%T 648855,951705,1358505,1894007,2586617,3468647,4576567,5951257,

%U 7638259,9688029,12156189,15103779,18597509

%N Crystal ball sequence for A_5 lattice.

%C Partial sums of A008385.

%H T. D. Noe, <a href="/A008386/b008386.txt">Table of n, a(n) for n = 0..1000</a>

%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).

%H <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = (2*n+1)*(63*n^4+126*n^3+217*n^2+154*n+60)/60. - _T. D. Noe_, Apr 29 2007

%F G.f.: (1+x)*(1+24*x+76*x^2+24*x^3+x^4)/(1-x)^6. - _Colin Barker_, Mar 16 2012

%t LinearRecurrence[{6,-15,20,-15,6,-1},{1,31,271,1281,4251,11253},30] (* _Harvey P. Dale_, Apr 08 2018 *)

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_ and _J. H. Conway_