login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Poupard's triangle: triangle of numbers arising in enumeration of binary trees.
10

%I #63 Dec 14 2019 08:23:02

%S 1,1,2,1,4,8,10,8,4,34,68,94,104,94,68,34,496,992,1420,1712,1816,1712,

%T 1420,992,496,11056,22112,32176,40256,45496,47312,45496,40256,32176,

%U 22112,11056,349504,699008,1026400,1309568,1528384,1666688,1714000

%N Poupard's triangle: triangle of numbers arising in enumeration of binary trees.

%C The doubloon polynomials evaluated at q=1. [Note the error in (D1) of the Foata-Han article in the Ramanujan journal which should read d_{1,j}(q) = delta_{2,j}.] - _R. J. Mathar_, Jan 27 2011

%C T(n,k), 0 <= k <= 2n-2, is the number of increasing 0-2 trees on vertices [0,2n] in which the parent of 2n is k (Poupard). A little more generally, for fixed m in [k+1,2n], T(n,k) is the number of trees in which m is a leaf with parent k. (The case m=2n is Poupard's result.) T(n,k) is the number of increasing 0-2 trees on vertices [0,2n] in which the minimal path from the root ends at k+1 (Poupard). - _David Callan_, Aug 23 2011

%H Reinhard Zumkeller, <a href="/A008301/b008301.txt">Rows n = 0..100 of triangle, flattened</a>

%H Neil J. Y. Fan, Liao He, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p45">The Complete cd-Index of Boolean Lattices</a>, Electron. J. Combin., 22 (2015), #P2.45.

%H D. Foata, G.-N. Han, <a href="http://dx.doi.org/10.1007/s11139-009-9194-9">The doubloon polynomial triangle</a>, Ram. J. 23 (2010), 107-126.

%H Dominique Foata and Guo-Niu Han, <a href="http://dx.doi.org/10.1093/qmath/hap043">Doubloons and new q-tangent numbers</a>, Quart. J. Math. 62 (2) (2011) 417-432.

%H D. Foata and G.-N. Han, <a href="http://www-irma.u-strasbg.fr/~foata/paper/pub120.html">Tree Calculus for Bivariable Difference Equations</a>, 2012. - From _N. J. A. Sloane_, Feb 02 2013

%H D. Foata and G.-N. Han, <a href="http://arxiv.org/abs/1304.2484">Tree Calculus for Bivariable Difference Equations</a>, arXiv:1304.2484 [math.CO], 2013.

%H R. L. Graham and Nan Zang, <a href="http://dx.doi.org/10.1016/j.jcta.2007.06.003">Enumerating split-pair arrangements</a>, J. Combin. Theory, Ser. A, 115 (2008), pp. 293-303.

%H C. Poupard, <a href="http://dx.doi.org/10.1016/S0195-6698(89)80009-5">Deux propriétés des arbres binaires ordonnés stricts</a>, European J. Combin., 10 (1989), 369-374.

%F Recurrence relations are given on p. 370 of the Poupard paper; however, in line -5 the summation index should be k and in line -4 the expression 2_h^{k-1} should be replaced by 2d_h^(k-1). - _Emeric Deutsch_, May 03 2004

%F If we write the triangle like this:

%F 0, 1, 0

%F 0, 1, 2, 1, 0

%F 0, 4, 8, 10, 8, 4, 0

%F 0, 34, 68, 94, 104, 94, 68, 34, 0

%F then the first nonzero term is the sum of the previous row and the remaining terms in each row are obtained by the rule illustrated by 104 = 2*94 - 2*8 - 1*68. - _N. J. A. Sloane_, Jun 10 2005

%F Continuing Sloane's remark: If we also set the line "... 1 ..." on the top of the pyramid, then we obtain T(n,k) = A236934(n+1,k+1)/2^n for n >= 1 and 1 <= k <= 2n-1 (see the second Maple program). - _Peter Luschny_, May 12 2014

%e [1],

%e [1, 2, 1],

%e [4, 8, 10, 8, 4],

%e [34, 68, 94, 104, 94, 68, 34],

%e [496, 992, 1420, 1712, 1816, 1712, 1420, 992, 496],

%e [11056, 22112, 32176, 40256, 45496, 47312, 45496, 40256, 32176, 22112, 11056],

%e [349504, 699008, 1026400, 1309568, 1528384, 1666688, 1714000, 1666688, 1528384, 1309568, 1026400, 699008, 349504], ...

%p doubloon := proc(n,j,q) option remember; if n = 1 then if j=2 then 1; else 0; end if; elif j >= 2*n+1 or ( n>=1 and j<=1 ) then 0 ; elif j=2 and n>=1 then add(q^(k-1)*procname(n-1,k,q),k=1..2*n-2) ; elif n>=2 and 3<=j and j<=2*n then 2*procname(n,j-1,q)-procname(n,j-2,q)-(1-q)*add( q^(n+i+1-j)*procname(n-1,i,q),i=1..j-3) - (1+q^(n-1))*procname(n-1,j-2,q)+(1-q)*add(q^(i-j+1)*procname(n-1,i,q),i=j-1..2*n-1) ; else error; end if; expand(%) ; end proc:

%p A008301 := proc(n,k) doubloon(n+1,k+2,1) ; end proc:

%p seq(seq(A008301(n,k),k=0..2*n),n=0..12) ; # _R. J. Mathar_, Jan 27 2011

%p # Second program based on the Poupard numbers g_n(k) (A236934).

%p T := proc(n,k) option remember; local j;

%p if n = 1 then 1

%p elif k = 1 then 0

%p elif k = 2 then 2*add(T(n-1, j), j=1..2*n-3)

%p elif k > n then T(n, 2*n-k)

%p else 2*T(n, k-1)-T(n, k-2)-4*T(n-1, k-2)

%p fi end:

%p A008301 := (n,k) -> T(n+1,k+1)/2^n;

%p seq(print(seq(A008301(n,k), k=1..2*n-1)), n=1..6); # _Peter Luschny_, May 12 2014

%t doubloon[1, 2, q_] = 1; doubloon[1, j_, q_] = 0; doubloon[n_, j_, q_] /; j >= 2n+1 || n >= 1 && j <= 1 = 0; doubloon[n_ /; n >= 1, 2, q_] := doubloon[n, 2, q] = Sum[ q^(k-1)*doubloon[n-1, k, q], {k, 1, 2n-2}]; doubloon[n_, j_, q_] /; n >= 2 <= j && j <= 2n := doubloon[n, j, q] = 2*doubloon[n, j-1, q] - doubloon[n, j-2, q] - (1-q)*Sum[ q^(n+i+1-j)*doubloon[n-1, i, q], {i, 1, j-3}] - (1 + q^(n-1))*doubloon[n-1, j-2, q] + (1-q)* Sum[ q^(i-j+1)*doubloon[n-1, i, q], {i, j-1, 2n-1}]; A008301[n_,k_] := doubloon[n+1, k+2, 1]; Flatten[ Table[ A008301[n, k], {n, 0, 6}, {k, 0, 2n}]] (* _Jean-François Alcover_, Jan 23 2012, after _R. J. Mathar_ *)

%t T[n_, k_] := T[n, k] = Which[n==1, 1, k==1, 0, k==2, 2*Sum[T[n-1, j], {j, 1, 2*n-3}], k>n, T[n, 2*n-k], True, 2*T[n, k-1] - T[n, k-2] - 4*T[n-1, k - 2]]; A008301[n_, k_] := T[n+1, k+1]/2^n; Table[A008301[n, k], {n, 1, 6}, {k, 1, 2*n-1}] // Flatten (* _Jean-François Alcover_, Nov 28 2015, after _Peter Luschny_ *)

%o (Haskell)

%o a008301 n k = a008301_tabf !! n !! k

%o a008301_row n = a008301_tabf !! n

%o a008301_tabf = iterate f [1] where

%o f zs = zs' ++ tail (reverse zs') where

%o zs' = (sum zs) : h (0 : take (length zs `div` 2) zs) (sum zs) 0

%o h [] _ _ = []

%o h (x:xs) y' y = y'' : h xs y'' y' where y'' = 2*y' - 2*x - y

%o -- _Reinhard Zumkeller_, Mar 17 2012

%Y Cf. A107652. Leading diagonal and row sums = A002105.

%Y Cf. A210108 (left half).

%K nonn,tabf,easy,nice

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, May 03 2004