Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Jan 25 2023 13:22:31
%S 0,0,0,0,1,2,4,8,16,24,36,54,81,108,144,192,256,320,400,500,625,750,
%T 900,1080,1296,1512,1764,2058,2401,2744,3136,3584,4096,4608,5184,5832,
%U 6561,7290,8100,9000,10000,11000,12100,13310,14641,15972,17424,19008,20736
%N a(n) = floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4).
%C a(n) is the maximal product of four nonnegative integers whose sum is n. - _Andres Cicuttin_, Sep 26 2018
%H Vincenzo Librandi, <a href="/A008233/b008233.txt">Table of n, a(n) for n = 0..3000</a>
%H Dhruv Mubayi, <a href="http://homepages.math.uic.edu/~mubayi/papers/hypcountrevHP.pdf">Counting substructures II: Hypergraphs</a>, preprint, 2012.
%H Dhruv Mubayi, <a href="http://dx.doi.org/10.100/s00493-013-2638-2">Counting substructures II: Hypergraphs</a>, Combinatorica 33 (2013), no. 5, 591--612. MR3132928.
%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1).
%F Let b(n) = A002620(n), the quarter-squares. Then this sequence is b(0)*b(0), b(0)*b(1), b(1)*b(1), b(1)*b(2), b(2)*b(2), b(2)*b(3), ...
%F From _R. J. Mathar_, Feb 20 2011: (Start)
%F a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14).
%F G.f.: -x^4*(1+x^6+x^2+2*x^3+x^4) / ( (1+x)^3*(x^2+1)^3*(x-1)^5 ). (End)
%F Sum_{n>=4} 1/a(n) = 1 + zeta(4). - _Amiram Eldar_, Jan 10 2023
%F a(4*n) = n^4. - _Bernard Schott_, Jan 24 2023
%p A008233:=n->floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4); seq(A008233(n), n=0..50); # _Wesley Ivan Hurt_, Dec 31 2013
%t Table[Floor[n/4]*Floor[(n + 1)/4]*Floor[(n + 2)/4]*Floor[(n + 3)/4], {n, 0, 50}] (* _Stefan Steinerberger_, Apr 03 2006 *)
%t Table[Times@@Floor[Range[n,n+3]/4],{n,0,50}] (* _Harvey P. Dale_, Mar 30 2019 *)
%o (Haskell)
%o a008233 n = product $ map (`div` 4) [n..n+3]
%o -- _Reinhard Zumkeller_, Jun 08 2011
%o (Magma) [Floor(n/4)*Floor((n+1)/4)*Floor((n+2)/4)*Floor((n+3)/4): n in [0..50]]; // _Vincenzo Librandi_, Jun 09 2011
%o (PARI) a(n) = prod(i=0, 3, (n+i)\4); \\ _Altug Alkan_, Sep 27 2018
%Y Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), this sequence (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
%Y Cf. A013662.
%K nonn,nice,easy
%O 0,6
%A _N. J. A. Sloane_
%E More terms from _Stefan Steinerberger_, Apr 03 2006