login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of non-Abelian metacyclic groups of order 2^n.
1

%I #20 Oct 06 2016 11:52:45

%S 0,0,2,5,9,15,22,32,43,57,72,91,110,134,158,187,216,251,285,326,366,

%T 413,459,513,565,626,685,753,819,895,968,1052,1133,1225,1314,1415,

%U 1512,1622,1728,1847,1962,2091,2215,2354,2488,2637,2781,2941,3095,3266,3431

%N Number of non-Abelian metacyclic groups of order 2^n.

%H Colin Barker, <a href="/A007982/b007982.txt">Table of n, a(n) for n = 1..1000</a>

%H Steven Liedahl, <a href="http://dx.doi.org/10.1006/jabr.1996.0381">Enumeration of metacyclic p-groups</a>, J. Algebra 186 (1996), no. 2, 436-446.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1).

%F a(n) = A136184(n) - floor(n/2) - 1. - _Eric M. Schmidt_, Jan 08 2015

%F G.f.: -x^3*(x^8+x^7-x^6-x^5+2*x^4+2*x^3-3*x-2) / ((x-1)^4*(x+1)^2*(x^2+x+1)). - _Colin Barker_, Jan 12 2015

%t LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{0,0,2,5,9,15,22,32,43,57,72},60] (* _Harvey P. Dale_, Oct 06 2016 *)

%o (PARI) concat([0,0], Vec(-x^3*(x^8+x^7-x^6-x^5+2*x^4+2*x^3-3*x-2) / ((x-1)^4*(x+1)^2*(x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Jan 12 2015

%K nonn,easy

%O 1,3

%A S. Liedahl

%E a(2) corrected and sequence extended (using A136184) by _Eric M. Schmidt_, Jan 08 2015