The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007894 Number of fullerenes with 2n vertices (or carbon atoms). 8
1, 0, 1, 1, 2, 3, 6, 6, 15, 17, 40, 45, 89, 116, 199, 271, 437, 580, 924, 1205, 1812, 2385, 3465, 4478, 6332, 8149, 11190, 14246, 19151, 24109, 31924, 39718, 51592, 63761, 81738, 99918, 126409, 153493, 191839, 231017, 285914, 341658, 419013 (list; graph; refs; listen; history; text; internal format)
Enantiomorphic pairs are regarded as the same here. Cf. A057210.
Contradictory results from the program "buckygen" from Brinkmann et al. (2012) and the program "fullgen" from Brinkmann and Dress (1997) led to the detection of a non-algorithmic error in fullgen. This bug has now been fixed and the results are in complete agreement. a(10)-a(190) were independently confirmed by buckygen and fullgen, while a(191)-a(200) were computed only by buckygen. - Jan Goedgebeur, Aug 08 2012
A. T. Balaban, X. Liu, D. J. Klein, D. Babic, T. G. Schmalz, W. A. Seitz and M. Randic, "Graph invariants for fullerenes", J. Chem. Inf. Comput. Sci., vol. 35 (1995) 396-404.
M. Deza, M. Dutour and P. W. Fowler, Zigzags, railroads and knots in fullerenes, J. Chem. Inf. Comput. Sci., 44 (2004), 1282-1293.
J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Cambridge Univ. Press, 1995, see p. 32.
P. W. Fowler, D. E. Manolopoulos and R. P. Ryan, "Isomerization of fullerenes", Carbon, 30 1235 1992.
A. M. Livshits and Yu. E. Lozovik, Cut-and-unfold approach to Fullerene enumeration, J. Chem. Inf. Comput. Sci., 44 (2004), 1517-1520.
Milicevic, A., and N. Trinajstic. "Combinatorial enumeration in chemistry." Chapter 8 in Chemical Modelling: Application and Theory, Vol. 4 (2006): 405-469.
M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
Gunnar Brinkmann, Jan Goedgebeur, and Brendan D. McKay, The Generation of Fullerenes, arXiv:1207.7010 [math.CO], 2012.
Gunnar Brinkmann and Andreas Dress, fullgen.
Gunnar Brinkmann and Andreas W. M. Dress, A constructive enumeration of fullerenes, Journal of Algorithms, Vol. 23, No. 2 (1997), 345-358.
Gunnar Brinkmann, Jan Goedgebeur, and Brendan D. McKay, buckygen.
CombOS - Combinatorial Object Server, generate fullerenes
Philip Engel and Peter Smillie, The number of non-negative curvature triangulations of S^2, arXiv:1702.02614 [math.GT], 2017.
Jan Goedgebeur and Brendan D. McKay, Fullerenes with distant pentagons, arXiv:1508.02878 [math.CO], (12-August-2015).
House of Graphs, Fullerenes.
Eric Weisstein's World of Mathematics, Fullerene
Wikipedia, Fullerene
a(n) = (809/2612138803200)*sigma_9(n) + O(n^8) where sigma_9(n) is the ninth divisor power sum, cf. A013957. - Philip Engel, Nov 29 2017
Sequence in context: A355403 A319055 A339546 * A102625 A117777 A223547
Boris Shraiman (boris(AT)physics.att.com), Gunnar Brinkmann and A. Dress (dress(AT)mathematik.uni-bielefeld.de)
Corrected a(68)-a(100) and added a(101)-a(200). - Jan Goedgebeur, Aug 08 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 22:56 EDT 2023. Contains 363102 sequences. (Running on oeis4.)