login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling numbers of second kind S(2n,n).
63

%I #64 Nov 15 2023 04:14:23

%S 1,1,7,90,1701,42525,1323652,49329280,2141764053,106175395755,

%T 5917584964655,366282500870286,24930204590758260,1850568574253550060,

%U 148782988064375309400,12879868072770626040000,1194461517469807833782085,118144018577011378596484455

%N Stirling numbers of second kind S(2n,n).

%C Chan and Manna prove that a(n) is odd if and only if n is in A003714. - _Jason Kimberley_, Sep 14 2009

%C The number of ways to partition a set of 2*n elements into n disjoint subsets. - _Vladimir Reshetnikov_, Oct 10 2016

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

%H Alois P. Heinz, <a href="/A007820/b007820.txt">Table of n, a(n) for n = 0..345</a> (terms n = 1..200 from Vincenzo Librandi)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H O-Y. Chan and D. V. Manna, <a href="http://www.oyeat.com/papers/stirling9.pdf">Divisibility properties of Stirling numbers of the second kind</a> [From _Jason Kimberley_, Sep 14 2009]

%F a(n) = A048993(2n,n). - _R. J. Mathar_, Mar 15 2011

%F Asymptotic: a(n) ~ (4*n/(e*z*(2-z)))^n/sqrt(2*Pi*n*(z-1)), where z = A256500 = 1.59362426... is a root of the equation exp(z)*(2-z)=2. - _Vaclav Kotesovec_, May 30 2011

%F a(n) = sum(binomial(n,k)*(-1)^k*(n-k)^(2*n),k,0,n)/n!. - _Emanuele Munarini_, Jul 01 2011

%F a(n) = [x^n] 1 / Product_{k=1..n} (1-k*x). - _Paul D. Hanna_, Oct 17 2012

%F O.g.f.: Sum_{n>=1} (n^2)^n * exp(-n^2*x) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n. - _Paul D. Hanna_, Oct 17 2012

%F G.f.: sum(n>0, a(n)*n!/(2*n)!) = x*B'(x)/B(x)-1, where B(x) satisfies B(x)^2 = x*(exp(B(x))-1). - _Vladimir Kruchinin_, Mar 13 2013

%F a(n) = sum(j=0..n, (-1)^(n-j)*n^j*binomial(2*n,j)*stirling2(2*n-j,n)). - _Vladimir Kruchinin_, Jun 14 2013

%e G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...

%e where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! +... - _Paul D. Hanna_, Oct 17 2012

%p A007820 := proc(n) Stirling2(2*n,n) ; end proc:

%p seq(A007820(n),n=0..20) ; # _R. J. Mathar_, Mar 15 2011

%t Table[StirlingS2[2n, n], {n, 1, 12}] (* _Emanuele Munarini_, Mar 12 2011 *)

%o (Sage) [stirling_number2(2*i,i) for i in range(1,20)] # _Zerinvary Lajos_, Jun 26 2008

%o (Maxima) makelist(stirling2(2*n,n),n,0,12); /* _Emanuele Munarini_, Mar 12 2011 */

%o (PARI) a(n)=stirling(2*n,n,2); /* _Joerg Arndt_, Jul 01 2011 */

%o (PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ _Paul D. Hanna_, Oct 17 2012

%o (PARI) {a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ _Paul D. Hanna_, Oct 17 2012

%Y Cf. A187646, A002465, A191236, A217913, A217914, A217915.

%K nonn,easy

%O 0,3

%A kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)

%E Typo in Mathematica program fixed by _Vincenzo Librandi_, May 04 2013

%E a(0)=1 prepended by _Alois P. Heinz_, Feb 01 2018