login
A007818
Maximal number of bonds joining n nodes in simple cubic lattice.
8
0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 21, 23, 25, 28, 30, 33, 34, 36, 38, 41, 43, 46, 48, 51, 54, 55, 57, 59, 62, 64, 67, 69, 72, 75, 76, 78, 80, 83, 85, 88, 90, 93, 96, 98, 101, 104, 105, 107, 109, 112, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141
OFFSET
1,3
COMMENTS
a(n) is also the maximal number of kisses between n cubes to form a polycube. The surface area of such polycubes are A193416. - Mohammed Yaseen, Aug 08 2021
LINKS
Martin Y. Veillette, Table of n, a(n) for n = 1..500
G. Agnarsson, On the number of hypercubic bipartitions of an integer, arXiv preprint arXiv:1106.4997 [math.CO], 2011.
G. Agnarsson, Induced subgraphs of hypercubes, arXiv preprint arXiv:1112.3015 [math.CO], 2011.
G. Agnarsson and K. Lauria, Extremal subgraphs of the d-dimensional grid graph, arXiv preprint arXiv:1302.6517 [math.CO], 2013.
FORMULA
a(n) = 3*n - A193416(n)/2. - Mohammed Yaseen, Aug 08 2021
MATHEMATICA
qmax = 2000; sequence =
FoldList[Plus, 0, q = Table[3, {qmax}];
q[[Flatten[
Table[Table[{j^3 + i (i - 1), j^3 + i^2, j^2 (j + 1) + i (i + 1),
j^2 (j + 1) + i^2, (j + 1)^2 j + i (i + 1), (j + 1)^2 j +
i^2}, {i, 1, j}], {j, 0, (qmax)^(1/3) - 1}]]]]--;
q[[Flatten[
Table[{j^3, j^2 (j + 1), (j + 1)^2 j}, {j,
1, (qmax)^(1/3) - 1}]]]]--; q] (* Martin Y. Veillette, Jul 19 2011 *)
CROSSREFS
Cf. A193416.
Sequence in context: A116650 A140205 A140206 * A158618 A000788 A053039
KEYWORD
nonn
AUTHOR
D. Heuer (heuer(AT)isnd23.in2p3.fr)
STATUS
approved