Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Aug 02 2023 14:36:46
%S 1,1,2,2,4,3,5,4,8,6,9,7,12,8,12,9,17,12,18,14,23,15,22,16,28,19,27,
%T 20,32,20,29,21,38,26,38,29,47,30,44,32,55,37,52,38,60,37,53,38,66,44,
%U 63,47,74,46,66,47,79,52,72,52,81,49,70,50,88,59,85,64
%N 5th binary partition function.
%C The number of ways of writing n as a sum of powers of 2, each power being used at most four times. - _Dmitry Kamenetsky_, Jul 14 2023
%H Alois P. Heinz, <a href="/A007728/b007728.txt">Table of n, a(n) for n = 0..10000</a>
%H B. Reznick, <a href="http://dx.doi.org/10.1007/978-1-4612-3464-7_29">Some binary partition functions</a>, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
%F G.f.: Product_{k>=0} (1 - x^(5*2^k))/(1 - x^(2^k)). - _Ilya Gutkovskiy_, Jul 09 2019
%p b:= proc(n, i) option remember;
%p `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0,
%p b(n-j*2^i, i-1)), j=0..4)))
%p end:
%p a:= n-> b(n, ilog2(n)):
%p seq(a(n), n=0..70); # _Alois P. Heinz_, Jun 21 2012
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0, Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]]; a[n_] := b[n, Log[2, n] // Floor, 5]; Table[a[n], {n, 0, 70} ] (* _Jean-François Alcover_, Jan 17 2014, after _Alois P. Heinz_ *)
%Y A column of A072170.
%Y Cf. A000123, A018819.
%K nonn,look
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Vladeta Jovovic_, May 06 2004