login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (3^k + 1)/4 is prime.
(Formerly M2420)
29

%I M2420 #71 Dec 04 2024 18:50:34

%S 3,5,7,13,23,43,281,359,487,577,1579,1663,1741,3191,9209,11257,12743,

%T 13093,17027,26633,104243,134227,152287,700897,1205459,1896463,

%U 2533963,2674381,7034611

%N Numbers k such that (3^k + 1)/4 is prime.

%C Prime repunits in base -3.

%D J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Paul Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]

%H H. Dubner and T. Granlund, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.

%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>

%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>

%H Robert G. Wilson v, <a href="/A084740/a084740.pdf">Letter to N. J. A. Sloane, circa 1991.</a>

%t lst={};Do[If[PrimeQ[(3^n+1)/4], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *)

%o (PARI) is(n)=ispseudoprime((3^n+1)/4) \\ _Charles R Greathouse IV_, Apr 29 2015

%K hard,nonn,more

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_

%E a(20) from _Robert G. Wilson v_, Apr 11 2005

%E a(22) from _Paul Bourdelais_, Nov 08 2007

%E a(23) from _Paul Bourdelais_, Apr 07 2008

%E a(24) from _Paul Bourdelais_, Apr 05 2010

%E a(25) from _Paul Bourdelais_, Aug 28 2015

%E a(26) from _Paul Bourdelais_, Jan 30 2020

%E a(27) from _Paul Bourdelais_, Mar 06 2020

%E a(28) from _Paul Bourdelais_, Mar 22 2024

%E a(29) from _Paul Bourdelais_, Dec 04 2024