login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = F(F(n)), where F is a Fibonacci number.
(Formerly M1537)
22

%I M1537 #125 Oct 29 2024 12:06:19

%S 0,1,1,1,2,5,21,233,10946,5702887,139583862445,1779979416004714189,

%T 555565404224292694404015791808,

%U 2211236406303914545699412969744873993387956988653,2746979206949941983182302875628764119171817307595766156998135811615145905740557

%N a(n) = F(F(n)), where F is a Fibonacci number.

%C a(20) is approximately 2.830748520089124 * 10^1413, much too large to include even in the b-file. - _Alonso del Arte_, Apr 30 2020

%C Let M(0) denote the 2 X 2 identity matrix, and let M(1) = [[0, 1], [1, 1]]. Let M(n) = M(n-2) * M(n-1). Then a(n) is equal to both the (1, 2)-entry and the (2, 1)-entry of M(n). - _John M. Campbell_, Jul 02 2021

%C This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - _Peter Bala_, Dec 06 2022

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A007570/b007570.txt">Table of n, a(n) for n = 0..19</a> (terms n = 0..17 from T. D. Noe)

%H Alonso del Arte, <a href="/A007570/a007570.txt">Table of n, a(n) for n = 0 .. 24, with digits grouped in hundreds</a>

%H John M. Campbell, <a href="/A007570/a007570.pdf">A Matrix-Based Recursion Relation for F_{F_n}</a>, Fib. Quart., Vol. 60, No. 3 (2022), pp. 256-261.

%H Bakir Farhi, <a href="https://arxiv.org/abs/1512.09033">Summation of certain infinite Fibonacci related series</a>, arXiv:1512.09033 [math.NT], 2015. See p. 6, eq. 2.9.

%H George Ledin, Jr., <a href="https://fq.math.ca/Scanned/6-6/advanced6-6.pdf">Problem H-147</a>, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 352; <a href="https://www.fq.math.ca/Scanned/8-4/advanced8-4.pdf">Converging Fractions</a>, Solution to Problem H-147 by David Zeitlin, ibid., Vol. 8, No. 4 (1970), pp. 387-389.

%H Edward A. Parberry, Two recursion relations for F(F(n)), Fib. Quart., Vol. 15, No. 2 (1977), <a href="http://www.fq.math.ca/Scanned/15-2/parberry-a.pdf">p. 122</a> and <a href="http://www.fq.math.ca/Scanned/15-2/parberry-b.pdf">p. 139</a>.

%H Martin Stein, <a href="https://doi.org/10.15488/7983">Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers</a>, Dissertation, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2012.

%H Chris Street, <a href="http://www.codehappy.net/fibo.pdf">A Recurrence for the Sequence {F(F(n)), n>=0}</a>.

%F a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - _Carmine Suriano_, Jan 24 2011

%F Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - _Amiram Eldar_, Oct 30 2020

%F Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - _Amiram Eldar_, Apr 07 2021

%F Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - _Amiram Eldar_, Feb 02 2022

%p F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:

%p a:= n-> F(F(n)):

%p seq(a(n), n=0..14); # _Alois P. Heinz_, Oct 09 2015

%t F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}]

%t Fibonacci[Fibonacci[Range[0, 20]]] (* _Harvey P. Dale_, May 05 2012 *)

%o (Sage) [fibonacci(fibonacci(n)) for n in range(0, 14)] # _Zerinvary Lajos_, Nov 30 2009

%o (PARI) a(n)=fibonacci(fibonacci(n)) \\ _Charles R Greathouse IV_, Feb 03 2014

%o (Scala) val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 }

%o val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply()

%o (0 to 19).map(n => fibo(fiboLimited(n))) // _Alonso del Arte_, Apr 30 2020

%o (Python)

%o from sympy import fibonacci

%o def a(n): return fibonacci(fibonacci(n))

%o print([a(n) for n in range(15)]) # _Michael S. Branicky_, Feb 02 2022

%Y Cf. A000045, A001622, A005371, A058051, A094214.

%K nonn,nice,easy

%O 0,5

%A _N. J. A. Sloane_, _Robert G. Wilson v_

%E One more term from _Harvey P. Dale_, May 05 2012