Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2242 #21 Mar 06 2016 12:39:07
%S -3,-2,2,5,11,59,659,38939,25661459,999231590939,25641740502411581459,
%T 25622037156669717708454796390939,
%U 656993627914472375437286314449293585586011019581459,16833515146119850260546015286782697097805280607642932235667159033564811666316390939
%N Knopfmacher expansion of 1/2: a(n+1) = a(n-1)(a(n)+1)-1.
%D A. Knopfmacher, "Rational numbers with predictable Engel product expansions," in G. E. Bergum et al., eds., Applications of Fibonacci Numbers. Vol. 5, pp. 421-427.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H <a href="/index/El#Engel">Index entries for sequences related to Engel expansions</a>
%F a(n) ~ c^(phi^n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 1.438209999512701281674411567... . - _Vaclav Kotesovec_, Mar 06 2016
%t nxt[{a_,b_}]:={b,a(b+1)-1}; Join[{-3,-2},Transpose[NestList[nxt,{2,5},12]][[1]]] (* _Harvey P. Dale_, Oct 19 2012 *)
%t Flatten[{-3, -2, RecurrenceTable[{a[n+1] == a[n-1]*(a[n] + 1) - 1, a[1] == 2, a[2] == 2}, a, {n, 2, 14}]}] (* _Vaclav Kotesovec_, Mar 06 2016 *)
%K sign,easy,nice
%O 0,1
%A _N. J. A. Sloane_, _Jeffrey Shallit_
%E More terms from _Christian G. Bower_, Oct 15 1999
%E One additional term from _Harvey P. Dale_, Oct 19 2012