login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 8n+7, that is, primes congruent to -1 mod 8.
(Formerly M4376)
82

%I M4376 #80 Sep 08 2022 08:44:35

%S 7,23,31,47,71,79,103,127,151,167,191,199,223,239,263,271,311,359,367,

%T 383,431,439,463,479,487,503,599,607,631,647,719,727,743,751,823,839,

%U 863,887,911,919,967,983,991,1031,1039,1063,1087,1103,1151

%N Primes of the form 8n+7, that is, primes congruent to -1 mod 8.

%C Primes that are the sum of no fewer than four positive squares.

%C Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.

%C Primes p such that x^4 = 2 has just two solutions mod p. Subsequence of A040098. Solutions mod p are represented by integers from 0 to p - 1. For p > 2, i is a solution mod p of x^4 = 2 if and only if p - i is a solution mod p of x^4 = 2, so the sum of the two solutions is p. The solutions are given in A065907 and A065908. - _Klaus Brockhaus_, Nov 28 2001

%C As this is a subset of A001132, this is also a subset of the primes of form x^2 - 2y^2. And as this is also a subset of A038873, this is also a subset of the primes of form x^2 - 2y^2. - _Tito Piezas III_, Dec 28 2008

%C Subsequence of A141164. - _Reinhard Zumkeller_, Mar 26 2011

%C Also a subsequence of primes of the form x^2 + y^2 + z^2 + 1. - _Arkadiusz Wesolowski_, Apr 05 2012

%C Primes p such that p XOR 6 = p - 6. - _Brad Clardy_, Jul 22 2012

%D Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.

%H Ray Chandler, <a href="/A007522/b007522.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%H Milton Abramowitz and Irene A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F Equals A000040 INTERSECT A004215. - _R. J. Mathar_, Nov 22 2006

%F a(n) = 7 + A139487(n)*8, n >= 1. - _Wolfdieter Lang_, Feb 18 2015

%p select(isprime, [seq(i,i=7..10000,8)]); # _Robert Israel_, Nov 22 2016

%t Select[8Range[200] - 1, PrimeQ] (* _Alonso del Arte_, Nov 07 2016 *)

%o (PARI) A007522(m) = local(p, s, x, z); forprime(p = 3, m, s = []; for(x = 0, p-1, if(x^4%p == 2%p, s = concat(s, [x]))); z = matsize(s)[2]; if(z == 2, print1(p, ", "))) A007522(1400)

%o (Haskell)

%o a007522 n = a007522_list !! (n-1)

%o a007522_list = filter ((== 1) . a010051) a004771_list

%o -- _Reinhard Zumkeller_, Jan 29 2013

%o (Magma) [p: p in PrimesUpTo(2000) | p mod 8 eq 7]; // _Vincenzo Librandi_, Jun 26 2014

%Y Subsequence of A004771.

%Y Cf. A040098, A014754, A065907, A065908, A010051.

%Y Cf. A141174 (d = 32). A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_