Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I M2267 #23 Aug 03 2021 03:52:43
%S 0,3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,5,6,1,1,73,1,4,2,3,8,1,
%T 15,1,1,4,5,1,1,3,2,1,2,2,5,2,1,3,1,1,1,3,1,5,1,3,1,2,1,2,1,2,34,1,1,
%U 5,1,2,7,2,1,2,4,1,1,23,15,2,1,2,3,1,1,7,1,3,2,1,8,3,2,1,1,8,93,1,8,3
%N Continued fraction for Wirsing's constant.
%D D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 350.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A007515/b007515.txt">Table of n, a(n) for n = 0..387</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/gkw.txt">The Gauss-Kuzmin-Wirsing constant</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Gauss-Kuzmin-WirsingConstant.html">Gauss-Kuzmin-Wirsing Constant</a>
%e 0.3036630029... = [0,3,3,2,2,3,13,1,174,1,...]
%o (PARI) { default(realprecision,382); lambda=0.\ 30366300289873265859744812190155623311087735225365\ 78951882454814672269952942469109843408119343636368\ 11098272263710616938474614859745801316065265381818\ 23787913244613989647642974095044629375949048702977\ 28772511058335175922044472408659119650778105589295\ 79186714752925653642591844121784234492057255294269\ 10040657788006767324303643964013896927671340737822\ 86711534915435462112848419717968; x=contfrac(lambda); for (n=1, 388, write("b007515.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 13 2009
%Y Cf. A038517.
%K nonn,cofr
%O 0,2
%A _N. J. A. Sloane_, _Robert G. Wilson v_
%E Extended by _Eric W. Weisstein_ using a computation of _Keith Briggs_, Jul 08 2003