login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p with property that p divides the sum of all primes <= p.
(Formerly M1554)
12

%I M1554 #79 Sep 08 2024 12:11:56

%S 2,5,71,369119,415074643,55691042365834801

%N Primes p with property that p divides the sum of all primes <= p.

%C a(6) > 29505444491. - _Jud McCranie_, Jul 08 2000

%C a(6) > 10^12. - _Jon E. Schoenfield_, Sep 11 2008

%C a(6), if it exists, is larger than 10^14. - _Giovanni Resta_, Jan 09 2014

%C Also primes p with property that p divides 1 plus the sum of all composites < p. - _Vicente Izquierdo Gomez_, Aug 05 2014

%C a(7) > 253814097223614463, - _Paul W. Dyson_, Sep 27 2022

%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.

%D Harry L. Nelson, Prime Sums, J. Rec. Math., 14 (1981), 205-206.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 129.

%H H. L. Nelson, <a href="/A007506/a007506.pdf">Letter to the Editor re: Prime Sums</a>, J. Recreational Mathematics 14.3 (1981-2), 205. (Annotated scanned copy)

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_018.htm">Puzzle 18. Some special sums of consecutive primes</a>, The Prime Puzzles and Problems Connection.

%e 2 divides 2;

%e 5 divides 2 + 3 + 5;

%e 71 divides 2 + 3 + 5 + 7 + ... + 61 + 67 + 71; etc.

%t sumOfPrimes = 0; Do[ sumOfPrimes += p; If[ Divisible[ sumOfPrimes, p], Print[p]], {p, Prime /@ Range[23000000]}] (* _Jean-François Alcover_, Oct 22 2012 *)

%t Transpose[Module[{nn=23000000,pr},pr=Prime[Range[nn]];Select[Thread[ {Accumulate[ pr], pr}], Divisible[#[[1]],#[[2]]]&]]][[2]] (* _Harvey P. Dale_, Feb 09 2013 *)

%o (PARI) s=0;forprime(p=2,1e9,s+=p;if(s%p==0,print1(p", "))) \\ _Charles R Greathouse IV_, Jul 22 2013

%Y Cf. A024011, A028581, A028582.

%K nonn,nice,hard,more

%O 1,1

%A _N. J. A. Sloane_, _Robert G. Wilson v_

%E Example corrected by _Harvey P. Dale_, Feb 09 2013

%E a(6) from _Paul W. Dyson_, Apr 16 2022