login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1 + Sum_{n>=1} a_n x^n = Product_{n>=1} (1-x^n)^prime(n).
(Formerly M0201)
9

%I M0201 #24 Oct 29 2023 09:45:53

%S 1,-2,-2,1,3,7,5,6,-10,-27,-50,-42,-30,41,148,241,345,303,167,-275,

%T -858,-1685,-2342,-2813,-2316,-536,2914,8228,14531,20955,24370,22393,

%U 10265,-13839,-53386,-104364,-161593,-209463,-228141,-188750,-62023,177547,541310,1009998,1527972,1976120,2189974

%N 1 + Sum_{n>=1} a_n x^n = Product_{n>=1} (1-x^n)^prime(n).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A007441/b007441.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=-Sum_{d|k} d*prime(d), cf. A061150.

%Y Cf. A030009, A030010, A061150, A061151, A061152.

%K sign

%O 0,2

%A _N. J. A. Sloane_.

%E Better description from _Vladeta Jovovic_, Apr 16 2001