login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of strict first-order maximal independent sets in cycle graph.
(Formerly M2205)
0

%I M2205 #25 Jan 02 2018 19:28:02

%S 0,0,0,0,0,3,0,8,3,15,11,27,26,49,53,88,102,156,190,275,346,484,621,

%T 851,1105,1495,1956,2625,3451,4608,6076,8088,10684,14195,18772,24912,

%U 32967,43719,57879,76723,101598,134641,178321,236280,312962,414644

%N Number of strict first-order maximal independent sets in cycle graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.

%H R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a>

%F Empirical g.f.: x^6*(x^2-3) / ((x-1)^2*(x+1)^2*(x^3+x^2-1)). - _Colin Barker_, Mar 29 2014

%F a(n) = A001608(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - _Sean A. Irvine_, Jan 02 2018

%Y Cf. A001608.

%K nonn

%O 1,6

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Jan 02 2018