login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k such that sigma(n+k) = sigma(k).
(Formerly M4928)
8

%I M4928 #35 Oct 29 2023 21:27:30

%S 1,14,33,382,51,6,20,10,15,14,21,28,35,182,24,26,30,142,40,34,42,20,

%T 57,135,70,30,99,42,66,406,88,56,60,54,93,24,105,248,147,44,63,30,80,

%U 435,114,52,196,310,140,40,105,92,160,66,120,140,105,88,352,154

%N Smallest k such that sigma(n+k) = sigma(k).

%C If p > 3 is prime, a(p) <= 14*p. - _Robert Israel_, Feb 21 2020

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Donovan Johnson, <a href="/A007365/b007365.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H R. G. Wilson, V, <a href="/A007015/a007015.pdf">Letter to N. J. A. Sloane, Jul. 1992</a>.

%p N:= 1000: # to get all terms before the first with n + a(n) > N

%p S:= map(numtheory:-sigma, [$1..N]):

%p Res:= NULL:

%p found:= true:

%p for n from 1 while found do

%p found:= false;

%p for k from 1 to N-n do

%p if S[k] = S[k+n] then

%p Res:= Res, k; found:= true; break;

%p fi

%p od;

%p od:

%p Res; # _Robert Israel_, Feb 21 2020

%t sk[n_]:=Module[{k=1},While[DivisorSigma[1,k]!=DivisorSigma[1,n+k], k++];k]; Array[sk,60,0] (* _Harvey P. Dale_, Oct 10 2012 *)

%o (PARI) A007365(m)= {local(k,n); for(k=1,m,n=1; while(sigma(n)!=sigma(n+k), n++); print1(n,","))} \\ _Klaus Brockhaus_

%Y Cf. A065932, A065933. sigma(x)=A000203(x) is the sum of the divisors of x.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_