%I M4972 #39 Jan 13 2025 07:48:31
%S 0,0,0,0,0,15,75,310,1060,3281,9564,26719,72239,191569,500797,1299925,
%T 3362473,8697198,22513878,58352126,151267141,391728632,1011734975,
%U 2602330120,6657204192,16920629023,42697311397,106912113623,265560809521,654270114555
%N Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="https://doi.org/10.1017/S0305004100042171">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100; <a href="http://boltzmann.wdfiles.com/local--files/refined-counting/ABMM.pdf">alternative link</a>.
%H A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="/A000219/a000219.pdf">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
%F a(n) = A000391(n) - A000390(n). - _Sean A. Irvine_, Dec 18 2017
%Y Cf. A000390, A000391.
%Y Cf. A007326, A007327, A007329, A007330.
%K nonn,more
%O 1,6
%A _N. J. A. Sloane_, _Mira Bernstein_
%E a(11)-a(21) from _Sean A. Irvine_, Dec 18 2017
%E More terms from _Amiram Eldar_, May 11 2024