login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*2^n.
(Formerly M2561)
244

%I M2561 #254 Aug 22 2024 20:35:45

%S 3,6,12,24,48,96,192,384,768,1536,3072,6144,12288,24576,49152,98304,

%T 196608,393216,786432,1572864,3145728,6291456,12582912,25165824,

%U 50331648,100663296,201326592,402653184,805306368,1610612736,3221225472,6442450944,12884901888

%N a(n) = 3*2^n.

%C Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.

%C Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - _Labos Elemer_, May 07 2002

%C Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - _Reinhard Zumkeller_, Feb 25 2003

%C Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - _Benoit Cloitre_, Mar 12 2003

%C The sequence of first differences is this sequence itself. - _Alexandre Wajnberg_ and _Eric Angelini_, Sep 07 2005

%C Subsequence of A122132. - _Reinhard Zumkeller_, Aug 21 2006

%C Apart from the first term, a subsequence of A124509. - _Reinhard Zumkeller_, Nov 04 2006

%C Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007

%C Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005

%C For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - _Milan Janjic_, May 10 2007

%C a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - _Jaroslav Krizek_, Aug 17 2009

%C Subsequence of A051916. - _Reinhard Zumkeller_, Mar 20 2010

%C Numbers containing the number 3 in their Collatz trajectories. - _Reinhard Zumkeller_, Feb 20 2012

%C a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - _Jon Perry_, Oct 10 2012

%C If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - _Farideh Firoozbakht_, Nov 30 2013

%C a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - _L. Edson Jeffery_, Jan 11 2014

%C If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - _Ross La Haye_, Jan 19 2014

%C Comment from Charles Fefferman, courtesy of _Doron Zeilberger_, Dec 02 2014: (Start)

%C Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).

%C The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.

%C For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)

%C Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - _N. J. A. Sloane_, Dec 29 2015

%C The average of consecutive powers of 2 beginning with 2^1. - _Melvin Peralta_ and Miriam Ong Ante, May 14 2016

%C For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - _Ivan N. Ianakiev_, Dec 09 2016

%C Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - _Jeffrey Shallit_, Dec 02 2019

%C Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - _Marco Ripà_, Aug 22 2022

%C The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - _Antti Karttunen_, Sep 06 2023

%C The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - _Felix Huber_, Feb 15 2024

%C A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - _Allan Bickle_, Aug 03 2024

%D Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.

%D T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).

%D Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A007283/b007283.txt">Table of n, a(n) for n = 0..1000</a>

%H K. Bezdek and Tudor Zamfirescu, <a href="http://tzamfirescu.tricube.de/TZamfirescu-125.pdf">A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number</a>, in: Coll. Math. Soc. J. Bolyai 63., Intuitive Geometry, Szeged (Hungary), North-Holland, Amsterdam, 1991, pp. 33-38.

%H Allan Bickle, <a href="https://allanbickle.wordpress.com/wp-content/uploads/2016/05/sierpinskigraphpaper2.pdf">Properties of Sierpinski Triangle Graphs</a>, Springer PROMS 448 (2021) 295-303.

%H Yuri Brudnyi and Pavel Shvartsman, <a href="https://doi.org/10.1155/S1073792894000140">Generalizations of Whitney's extension theorem</a>, International Mathematics Research Notices 1994.3 (1994): 129-139.

%H J. W. Cannon and P. Wagreich, <a href="http://dx.doi.org/10.1007/BF01444714">Growth functions of surface groups</a>, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.

%H Tomislav Došlić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Doslic/doslic3.html">Kepler-Bouwkamp Radius of Combinatorial Sequences</a>, Journal of Integer Sequences, Vol. 17, 2014, #14.11.3.

%H John Elias, <a href="/A007283/a007283.png">Illustration: 2^n+1 hexagram perimeters</a>

%H Lukas Fleischer and Jeffrey Shallit, <a href="https://arxiv.org/abs/1911.12464">Words With Few Palindromes, Revisited</a>, arxiv preprint arXiv:1911.12464 [cs.FL], November 27 2019.

%H A. Hinz, S. Klavzar, and S. Zemljic, <a href="https://doi.org/10.1016/j.dam.2016.09.024">A survey and classification of Sierpinski-type graphs</a>, Discrete Applied Mathematics 217 3 (2017), 565-600.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Roberto Rinaldi and Marco Ripà, <a href="https://arxiv.org/abs/2212.11216">Optimal cycles enclosing all the nodes of a k-dimensional hypercube</a>, arXiv:2212.11216 [math.CO], 2022.

%H Edwin Soedarmadji, <a href="http://dx.doi.org/10.1016/j.disc.2006.02.011">Latin Hypercubes and MDS Codes</a>, Discrete Mathematics, Volume 306, Issue 12, Jun 28 2006, Pages 1232-1239

%H D. Stephen, <a href="http://www.jstor.org/stable/2315186">Topology on Finite Sets</a>, American Mathematical Monthly, 75: 739 - 741, 1968.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).

%F G.f.: 3/(1-2*x).

%F a(n) = 2*a(n - 1), n > 0; a(0) = 3.

%F a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - _Benoit Cloitre_, Aug 20 2002

%F a(n) = A118416(n + 1, 2) for n > 1. - _Reinhard Zumkeller_, Apr 27 2006

%F a(n) = A000079(n) + A000079(n + 1). - _Zerinvary Lajos_, May 12 2007

%F a(n) = A000079(n)*3. - _Omar E. Pol_, Dec 16 2008

%F From _Paul Curtz_, Feb 05 2009: (Start)

%F a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.

%F a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)

%F a(n) = 2^n + 2^(n + 1). - _Jaroslav Krizek_, Aug 17 2009

%F a(n) = A173786(n + 1, n) = A173787(n + 2, n). - _Reinhard Zumkeller_, Feb 28 2010

%F A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - _Reinhard Zumkeller_, Sep 01 2012

%F a(n) = (A000225(n) + 1)*3. - _Martin Ettl_, Nov 11 2012

%F E.g.f.: 3*exp(2*x). - _Ilya Gutkovskiy_, May 15 2016

%F A020651(a(n)) = 2. - _Yosu Yurramendi_, Jun 01 2016

%F a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - _Ezhilarasu Velayutham_, Sep 01 2019

%F a(A048672(n)) = A225546(A133466(n)). - _Michel Marcus_ and _Peter Munn_, Nov 29 2019

%F Sum_{n>=1} 1/a(n) = 2/3. - _Amiram Eldar_, Oct 28 2020

%p A007283:=n->3*2^n; seq(A007283(n), n=0..50); # _Wesley Ivan Hurt_, Dec 03 2013

%t Table[3(2^n), {n, 0, 32}] (* _Alonso del Arte_, Mar 24 2011 *)

%o (PARI) a(n)=3*2^n

%o (PARI) a(n)=3<<n \\ _Charles R Greathouse IV_, Oct 10 2012

%o (Magma) [3*2^n: n in [0..30]]; // _Vincenzo Librandi_, May 18 2011

%o (Haskell)

%o a007283 = (* 3) . (2 ^)

%o a007283_list = iterate (* 2) 3

%o -- _Reinhard Zumkeller_, Mar 18 2012, Feb 20 2012

%o (Maxima) A007283(n):=3*2^n$

%o makelist(A007283(n),n,0,30); /* _Martin Ettl_, Nov 11 2012 */

%o (Scala) (List.fill(40)(2: BigInt)).scanLeft(1: BigInt)(_ * _).map(3 * _) // _Alonso del Arte_, Nov 28 2019

%o (Python)

%o def A007283(n): return 3<<n # _Chai Wah Wu_, Feb 14 2023

%Y Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.

%Y Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.

%Y Essentially same as A003945 and A042950.

%Y Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.

%Y Cf. A000079, A100540, A124508, A221718.

%Y Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

%Y Cf. A133466, A225546, A163511, A243071.

%Y Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959.

%K easy,nonn

%O 0,1

%A _N. J. A. Sloane_