login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 6b for the Monster group.
(Formerly M5111)
2

%I M5111 #57 Nov 27 2017 03:24:54

%S 1,21,171,745,2418,7587,20510,51351,122715,277384,598812,1255761,

%T 2543973,5011725,9653013,18176040,33535032,60831648,108490390,

%U 190557015,330174837,564626278,953857104,1593681480,2634409140,4311592119,6991502688,11237020682,17909802270

%N McKay-Thompson series of class 6b for the Monster group.

%C From _Gary W. Adamson_, Jul 21 2009: (Start)

%C (1 + 21x + 171x^2 + 745x^3 + ...)^2 = (1 + 42x + 783x^2 + 8672x^3 + ...)

%C where A030197 = (1, 42, 783, 8672, 65367, ...). (End)

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vaclav Kotesovec, <a href="/A007261/b007261.txt">Table of n, a(n) for n = 0..3000</a>

%H J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H J. McKay and H. Strauss, <a href="http://dx.doi.org/10.1080/00927879008823911">The q-series of monstrous moonshine and the decomposition of the head characters</a>, Comm. Algebra 18 (1990), no. 1, 253-278.

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F Expansion of (27 * x * (b(x)^3 + c(x)^3)^2 / (b(x) * c(x))^3)^(1/2) in powers of x where b(), c() are cubic AGM theta functions. - _Michael Somos_, Jun 16 2012

%F Convolution cube of A058537. - _Michael Somos_, Aug 20 2012

%F a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Nov 07 2015

%F Expansion of q^(1/2) * (eta(q)^6/eta(q^3)^6 + 27*eta(q^3)^6/eta(q)^6) in powers of q. - _G. A. Edgar_, Mar 10 2017

%F a(n) = A007262(n) + 27 * A121596(n-1). - _Sean A. Irvine_, Nov 26 2017

%e 1 + 21*x + 171*x^2 + 745*x^3 + 2418*x^4 + 7587*x^5 + 20510*x^6 + 51351*x^7 + ...

%e T6b = 1/q + 21*q + 171*q^3 + 745*q^5 + 2418*q^7 + 7587*q^9 + 20510*q^11 + ...

%t a[0] = 1; a[n_] := Module[{A = x*O[x]^n}, A = (QPochhammer[x^3 + A] / QPochhammer[x + A])^12; SeriesCoefficient[Sqrt[(1 + 27*x*A)^2/A], n]]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 06 2015, adapted from _Michael Somos_'s PARI script *)

%t CoefficientList[Series[(QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3)^3 / (QPochhammer[x, x]^3*QPochhammer[x^3, x^3]^6), {x, 0, 50}], x] (* _Vaclav Kotesovec_, Nov 07 2015 *)

%t nmax = 30; CoefficientList[Series[Product[(1 - x^k)^6/(1 - x^(3*k))^6, {k, 1, nmax}] + 27*x*Product[(1 - x^(3*k))^6/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 11 2017 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( sqrt((1 + 27 * x * A)^2 / A), n))} /* _Michael Somos_, Jun 16 2012 */

%o (PARI) N=66; q='q+O('q^N); t=(eta(q) / eta(q^3))^6; Vec(t + 27*q/t) \\ _Joerg Arndt_, Mar 11 2017

%Y Cf. A030197. - _Gary W. Adamson_, Jul 21 2009

%Y Cf. A058537.

%K nonn

%O 0,2

%A _N. J. A. Sloane_