login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 3B for the Monster group.
(Formerly M5310)
4

%I M5310 #29 Oct 09 2017 21:48:38

%S 1,0,54,-76,-243,1188,-1384,-2916,11934,-11580,-21870,79704,-71022,

%T -123444,421308,-352544,-581013,1885572,-1510236,-2388204,7469928,

%U -5777672,-8852004,26869968,-20218587,-30177684,89408826

%N McKay-Thompson series of class 3B for the Monster group.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A007244/b007244.txt">Table of n, a(n) for n = -1..1000</a>

%H J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.

%H N. D. Elkies, <a href="http://www.math.harvard.edu/~elkies/modular.pdf">Elliptic and modular curves over finite fields and related computational issues</a>, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 38.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%H J. McKay and H. Strauss, <a href="http://dx.doi.org/10.1080/00927879008823911">The q-series of monstrous moonshine and the decomposition of the head characters</a>, Comm. Algebra 18 (1990), no. 1, 253-278.

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F G.f.: 12 + (eta(q)/eta(q^3))^12.

%e T3B = 1/q + 54*q - 76*q^2 - 243*q^3 + 1188*q^4 - 1384*q^5 - 2916*q^6 + ...

%t a[ n_] := With[{m = n + 1}, SeriesCoefficient[ 12 q + (Product[ 1 - q^k, {k, m}] / Product[ 1 - q^k, {k, 3, m, 3}])^12, {q, 0, m}]] (* _Michael Somos_, Nov 08 2011 *)

%t QP = QPochhammer; s = 12 q + (QP[q]/QP[q^3])^12 + O[q]^30; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 16 2015, adapted from PARI *)

%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( 12*x + (eta(x + A) / eta(x^3 + A))^12, n))} /* _Michael Somos_, Nov 08 2011 */

%Y Essentially same as A030182, A045481.

%Y Cf. A030182.

%K sign,easy,nice

%O -1,3

%A _N. J. A. Sloane_