Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4899 #57 Mar 14 2024 23:25:59
%S 1,13,57,153,323,587,967,1483,2157,3009,4061,5333,6847,8623,10683,
%T 13047,15737,18773,22177,25969,30171,34803,39887,45443,51493,58057,
%U 65157,72813,81047,89879,99331,109423,120177,131613,143753,156617
%N Crystal ball sequence for hexagonal close-packing.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A007202/b007202.txt">Table of n, a(n) for n = 0..1000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Xiaogang Liang, Ilyar Hamid, and Haiming Duan, <a href="https://doi.org/10.1063/1.4954741">Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals</a>, AIP Advances 6, 065017 (2016).
%H <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1).
%F Nearest integer to (7/8)*( (n+1)^4 - n^4 ).
%F G.f.: (x^4+10*x^3+20*x^2+10*x+1)/(x-1)^4/(x+1).
%F a(n) = 7*(2*n+1)*(2*n^2+2*n+1)/8 +(-1)^n/8. - _R. J. Mathar_, Mar 24 2011
%F a(0)=1, a(1)=13, a(2)=57, a(3)=153, a(4)=323, a(n)=3*a(n-1)- 2*a(n-2)- 2*a(n-3)+3*a(n-4)-a(n-5). - _Harvey P. Dale_, Jul 15 2011
%F E.g.f.: ((4 + 49*x + 63*x^2 + 14*x^3)*cosh(x) + (3 + 49*x + 63*x^2+ 14*x^3)*sinh(x))/4. - _Stefano Spezia_, Mar 14 2024
%t Table[Floor[(7((n+1)^4-n^4)+4)/8],{n,0,40}] (* or *) LinearRecurrence[ {3,-2,-2,3,-1},{1,13,57,153,323},40] (* _Harvey P. Dale_, Jul 15 2011 *)
%o (PARI) j=[]; for(n=0,75,j=concat(j,round((7/8)*((n+1)^4-n^4)))); j
%o (Python)
%o def a(n): return round((7/8)*((n+1)**4-n**4))
%o print([a(n) for n in range(36)]) # _Michael S. Branicky_, Jan 13 2021
%Y Partial sums of A007899.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_ and _J. H. Conway_
%E More terms from _Jason Earls_, Jul 14 2001