Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2951 #63 Feb 02 2024 09:06:41
%S 1,1,3,13,75,525,4347,41245,441675,5259885,68958747,986533053,
%T 15292855019,255321427725,4567457001915,87156877087069,
%U 1767115200924299,37936303950503853,859663073472084315,20505904049009202685,513593410566661282347,13476082013068430626893
%N Number of ways to write 1 as ordered sum of n powers of 1/2, allowing repeats.
%C Also the dimension of the arity n component of the operad of level algebras (see the reference by Chataur-Livernet by definition), and the cardinality of the subset of the free commutative medial magma with n generators that contains each generator exactly once. The linear operad of level algebras is the linearization of the set operad of commutative medial magmas; the statement about commutative medial magmas follows from the description in the paper of Ježek-Kepka. - _Vladimir Dotsenko_, Mar 12 2022
%D D. E. Knuth, personal communication.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A007178/b007178.txt">Table of n, a(n) for n = 1..300</a>
%H D. Chataur and M. Livernet, <a href="https://arxiv.org/abs/math/0209363">Adem-Cartan operads</a>, arXiv:math/0209363 [math.AT], 2002-2003; Communications in Algebra 33 (2005), 4337-4360.
%H A. Giorgilli and G. Molteni, <a href="http://dx.doi.org/10.1016/j.jnt.2012.09.013">Representation of a 2-power as sum of k 2-powers: a recursive formula</a>, J. Number Theory 133 (2013), no. 4, 1251-1261.
%H Jia Huang and Erkko Lehtonen, <a href="https://arxiv.org/abs/2401.15786">Associative-commutative spectra for some varieties of groupoids</a>, arXiv:2401.15786 [math.CO], 2024. See p. 18.
%H J. Ježek and T. Kepka, <a href="http://dml.mathdoc.fr/item/106070/">Free entropic groupoids</a>, Commentationes Mathematicae Universitatis Carolinae,Tome 022 (1981), p. 223-233.
%H D. E. Knuth, <a href="/A007178/a007178.pdf">Letter to R. E. Tarjan & N. J. A. Sloane, Jul. 1975</a>
%H Daniel Krenn and Stephan Wagner, <a href="http://arxiv.org/abs/1410.4331">Compositions into Powers of b : Asymptotic Enumeration and Parameters</a>, arXiv:1410.4331 [math.NT], 2014.
%H S. Lehr, J. Shallit and J. Tromp, <a href="http://dx.doi.org/10.1016/0304-3975(95)00234-0">On the vector space of the automatic reals</a>, Theoret. Comput. Sci. 163 (1996), no. 1-2, 193-210.
%H G. Molteni, <a href="http://dx.doi.org/10.1016/j.jnt.2010.03.002">Cancellation in a short exponential sum</a>, J. Number Theory 130 (2010), no. 9, 2011-2027.
%H G. Molteni, <a href="http://dx.doi.org/10.1142/S1793042112501096">Representation of a 2-power as sum of k 2-powers: the asymptotic behavior</a>, Int. J. Number Theory 8 (2012), no. 8, 1923-1963.
%F a(n) = coefficient of z^(2^n) in (z+z^2+z^4+...+z^(2^n))^n. - _Don Knuth_.
%F From _Giuseppe Molteni_, Dec 14 2012: (Start)
%F Limit_{n->oo} (a(n)/n!)^(1/n) = 1.192674341213466032221288982528755... (see References: "Representation of a 2-power as sum of k 2-powers: the asymptotic behavior").
%F a(n) == 4 + (-1)^n (mod 8) for n > 2 (see References: "Representation of a 2-power as sum of k 2-powers: a recursive formula"). (End)
%F More precise asymptotics: a(n) ~ c * d^n * n!, where d = 1.192674341213466032221288982528755176734489232027131552652821007498903522051783..., c = 0.24849369086953813603231092781945750388624874631949260927875431616785914609... - _Vaclav Kotesovec_, Sep 20 2019
%F a(n) = A323840(n,n). - _Alois P. Heinz_, Mar 31 2021
%e For n=3, the 3 sums are 1/2 + 1/4 + 1/4, 1/4 + 1/2 + 1/4, and 1/4 + 1/4 + 1/2.
%p b:= proc(n, r, p) option remember; `if`(n<r, 0,
%p `if`(r=0, `if`(n=0, p!, 0), add(1/j!*
%p b(n-j, 2*(r-j), p+j), j=0..min(n, r))))
%p end:
%p a:= n-> b(n, 1, 0):
%p seq(a(n), n=1..23); # _Alois P. Heinz_, Nov 07 2017
%t f[n_] := Coefficient[Expand[Sum[z^(2^j), {j, n}]^n], z, 2^n]; Array[f, 20] (* _Robert G. Wilson v_, Apr 08 2012 *)
%o (PARI) f(n)={my(M);if(n>1,M=matrix(n,n);M[2,1] = 1;for(k=3,n,for(l=1,k-2,M[k,l] = 0;smx = min(2*l,k-l-1);for(s=1,smx, M[k,l] += binomial(k+l-1,2*l-s)*M[k-l,s]));M[k,k-1] = 1);M[n,1],1)}
%Y Cf. A002572, A294746, A323840.
%K nonn,easy,nice
%O 1,3
%A _N. J. A. Sloane_, _Simon Plouffe_, _Don Knuth_
%E More terms from _Hugo van der Sanden_
%E Minor edits from _Vaclav Kotesovec_, Jul 26 2014