login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of skeins with 2n+1 edges.
(Formerly M3504)
0

%I M3504 #24 Sep 15 2024 01:57:43

%S 1,1,4,15,62,271,1247,5938,29113,145815,743384,3844314,20118681,

%T 106348391,567002169,3045455865,16463622763,89509216860,489103356753,

%U 2684663659765,14795752770278,81841297482116,454202999050433,2528381760697852

%N Number of skeins with 2n+1 edges.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H R. C. Read, <a href="http://dx.doi.org/10.1007/BF02188172">On the enumeration of a class of plane multigraphs</a>, Aequat. Math. 31 (1986) no 1, 47-63.

%o (PARI) { my(s =y); for(loop=1,18, my(p = 1); forstep(i= 1,2*loop-1,2, my(sigmai = polcoef(s,i,y)) ; if(i==2*loop-1, print1(sigmai,", "); ) ; my(n=0, tmp = 0); while(i*n <=2*loop-1, my(ff = 1); for(k=1,n, ff *= (-sigmai-k+1)/k ; ) ; tmp += ff*(-y)^(i*n) ; n++ ; ) ; p *= tmp ; ) ; my(b = y-s); forstep(i=1,2*loop-1,2, b += polcoef(p,i,y)*y^i ; ) ; s = y ; for(r=0,loop-1, for(i=0,2*loop+1, s += polcoef(b^(3+2*r),i,y)*y^i ; ) ; ) ; ) ; } \\ _R. J. Mathar_, Apr 24 2006

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _R. J. Mathar_, Apr 24 2006

%E More terms from _Sean A. Irvine_, Nov 07 2017