login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of irreducible positions of size n in Montreal solitaire.
(Formerly M1441)
6

%I M1441 #33 Dec 20 2017 04:12:10

%S 1,2,5,13,35,95,260,714,1965,5415,14934,41206,113730,313958,866801,

%T 2393315,6608473,18248017,50389350,139144906,384237186,1061044865,

%U 2930013158,8091077148,22343115337,61699480866,170380367189,470497972866

%N Number of irreducible positions of size n in Montreal solitaire.

%C a(n) is also the number of indecomposable permutations with exactly n inversions; there is one indecomposable permutation with no inversions. - _David Bevan_, Dec 19 2017

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H David Bevan, <a href="/A007075/b007075.txt">Table of n, a(n) for n = 1..1000</a>

%H C. Cannings, J. Haigh, <a href="https://doi.org/10.1016/0097-3165(92)90037-U">Montreal solitaire</a>, J. Combin. Theory Ser. A 60 (1992), no. 1, 50-66.

%F a(n) = d(n, 1) where d(n, k) is defined in A007046. - _Sean A. Irvine_, Oct 06 2017

%F The ordinary generating function is f(1), where f(v) satisfies the functional equation f(v) = v*(1 + f(1 + x*v) - f(1)). The variable x marks inversions and v marks left-to-right minima. - _David Bevan_, Dec 19 2017

%e a(3) = 5; five indecomposable permutations have three inversions: 321, 2341, 2413, 3142, 4123. - _David Bevan_, Dec 19 2017

%t r[1,1]=1;r[_,0]:=0;r[n_,k_]:=r[n,k]=Sum[r[n-k,j]Binomial[j+1,k],{j,k-1,(Sqrt[8(n-k)+1]-1)/2}];a[n_]:=Sum[r[n,k],{k,(Sqrt[8n+1]-1)/2}];Array[a,20] (* _David Bevan_, Dec 19 2017 *)

%Y Cf. A007046, A007048, A007049, A007050, A007076.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Oct 06 2017