login
A007010
Number of 4-voter voting schemes with n linearly ranked choices.
(Formerly M4851)
1
1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792, 649936, 1092672, 1779408, 2817288, 4350105, 6567660, 9716905, 14114892, 20163924, 28368912, 39357396, 53902212, 72947329, 97636812, 129347505, 169725360, 220726080, 284659968, 364241728
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel E. Loeb, On Games, Voting Schemes and Distributive Lattices. LaBRI Report 625-93, University of Bordeaux I, 1993. [broken link]
Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).
FORMULA
G.f.: x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9). - Ralf Stephan, Apr 23 2004
From Colin Barker, Jan 07 2016: (Start)
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+864*n^2+384*n)/3840 for n even.
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+894*n^2+504*n+135)/3840 for n odd.
(End)
MATHEMATICA
LinearRecurrence[{6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1}, {1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792}, 40] (* Harvey P. Dale, Feb 12 2023 *)
PROG
(PARI) Vec(x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9) + O(x^100)) \\ Colin Barker, Jan 07 2016
CROSSREFS
Sequence in context: A009500 A012195 A147650 * A069996 A183504 A194493
KEYWORD
nonn,easy
STATUS
approved