OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Daniel E. Loeb, On Games, Voting Schemes and Distributive Lattices. LaBRI Report 625-93, University of Bordeaux I, 1993. [broken link]
Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).
FORMULA
G.f.: x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9). - Ralf Stephan, Apr 23 2004
From Colin Barker, Jan 07 2016: (Start)
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+864*n^2+384*n)/3840 for n even.
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+894*n^2+504*n+135)/3840 for n odd.
(End)
MATHEMATICA
LinearRecurrence[{6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1}, {1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792}, 40] (* Harvey P. Dale, Feb 12 2023 *)
PROG
(PARI) Vec(x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9) + O(x^100)) \\ Colin Barker, Jan 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved