login
A007000
Number of partitions of n into Fibonacci parts (with 2 types of 1).
(Formerly M1045)
9
1, 2, 4, 7, 11, 17, 25, 35, 49, 66, 88, 115, 148, 189, 238, 297, 368, 451, 550, 665, 799, 956, 1136, 1344, 1583, 1855, 2167, 2520, 2920, 3373, 3882, 4455, 5097, 5814, 6617, 7509, 8502, 9604, 10823, 12173, 13662, 15302, 17110, 19093, 21271, 23657, 26266
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
James Propp and N. J. A. Sloane, Email, March 1994.
FORMULA
a(n) = 1/n*Sum_{k=1..n} (A005092(k)+1)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Aug 22 2002
G.f.: 1/Product_{j>=1} (1-x^fibonacci(j)). - Emeric Deutsch, Mar 05 2006
G.f.: Sum_{i>=0} x^Fibonacci(i) / Product_{j=1..i} (1 - x^Fibonacci(j)). - Ilya Gutkovskiy, May 07 2017
EXAMPLE
a(2)=4 because we have [2],[1',1'],[1',1],[1,1] (the two types of 1 are denoted 1 and 1').
MAPLE
with(combinat): gf := 1/product((1-q^fibonacci(k)), k=1..20): s := series(gf, q, 200): for i from 0 to 199 do printf(`%d, `, coeff(s, q, i)) od: # James A. Sellers, Feb 08 2002
MATHEMATICA
CoefficientList[ Series[ 1/Product[1 - x^Fibonacci[i], {i, 1, 15}], {x, 0, 50}], x]
nmax = 46; f = Table[Fibonacci[n], {n, nmax}];
Table[Length[IntegerPartitions[n, All, f]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral)
a007000 n = a007000_list !! n
a007000_list = map (p' 1) [0..] where
p' = memo2 integral integral p
p _ 0 = 1
p k m | m < fib = 0
| otherwise = p' k (m - fib) + p' (k + 1) m where fib = a000045 k
-- Reinhard Zumkeller, Dec 09 2015
CROSSREFS
Cf. A003107.
Cf. A000045.
Sequence in context: A067997 A175491 A034379 * A073472 A096914 A004250
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Feb 08 2002
STATUS
approved