login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dimensions of representations by Witt vectors.
(Formerly M1921)
25

%I M1921 #55 Jun 12 2021 23:20:21

%S 0,1,2,9,24,130,720,8505,35840,412776,3628800,42030450,479001600,

%T 7019298000,82614884352,1886805545625,20922789888000,374426276224000,

%U 6402373705728000,134987215801622184,2379913632645120000

%N Dimensions of representations by Witt vectors.

%C Starting (1, 2, 9, 24, ...) = row sums of triangle A156792. - _Gary W. Adamson_, Feb 15 2009

%D Reutenauer, Christophe; Sur des fonctions symétriques liées aux vecteurs de Witt et à l'algèbre de Lie libre, Report 177, Dept. Mathématiques et d'Informatique, Univ. Québec à Montréal, Mar 26 1992.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006973/b006973.txt">Table of n, a(n) for n = 1..200</a>

%H J. Borwein, <a href="/A006973/a006973_1.pdf">Letter to C. Reutenauer, n.d.</a>

%H Jonathan Borwein and Shi Tuo Lou, <a href="http://dx.doi.org/10.1016/0021-9045(92)90006-A">Asymptotics of a sequence of Witt vectors</a>, J. Approx. Theory 69 (1992), no. 3, 326-337. Math. Rev. 93f:05007.

%H Johann Cigler, <a href="https://arxiv.org/abs/2006.06242">Some remarks on the power product expansion of the q-exponential series</a>, arXiv:2006.06242 [math.CO], 2020.

%H Gottfried Helms, <a href="http://go.helms-net.de/math/musings/dreamofasequence.pdf">A dream of a (number-) sequence</a>, 2007-2009.

%H C. Reutenauer, <a href="/A006973/a006973_2.pdf">Sur des fonctions symétriques liées aux vecteurs de Witt et à l'algèbre de Lie libre</a>, Report 177, Dept. Mathématiques et d'Informatique, Univ. Québec à Montréal, Mar 26 1992. [Annotated scanned copy]

%H Christophe Reutenauer, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k54707877/f493.image">Sur des fonctions symétriques reliées aux vecteurs de Witt</a>, [ On symmetric functions related to Witt vectors ] C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), no. 7, 487-490.

%H C. Reutenauer, <a href="/A006973/a006973.pdf">Sur des fonctions symétriques reliées aux vecteurs de Witt, [ On symmetric functions related to Witt vectors ] </a>, C. R. Acad. Sci. Paris Ser. I Math. 312 (1991), no. 7, 487-490. (Annotated scanned copy)

%F G.f.: Product_{n>=1} (1 + a(n)*x^n/n!) = exp(-x)/(1-x). - _Paul D. Hanna_, Feb 14 2008

%F A recurrence. With FP(n,m) the set of partitions of n with m distinct parts (which could be called fermionic partitions (fp)) and the multinomial numbers M1(fp(n,m)) (given as M_1 array for any partition in A036038): a(n) = (-1)^n - Sum_{m=2..maxm(n)} ( Sum_{fp from FP(n,m)} (M1(fp)*Product_{j=1..m} ( a(k[j]) ) ), with maxm(n) = A003056(n) = floor((sqrt(1+8*n) -1)/2) and the distinct parts k[j], j=1..m, of the partition of n, n>=2, with input a(1)=-1 (but only for this recurrence). Note that a(1)=0. Proof by comparing coefficients of (x^n)/n! in exp(-x) = (1-x)*Product_{j>=1} ( 1 + a(j)*(x^j)/j! ). See array A008289(n,m) for the cardinality of the set FP(n,m). Another recurrence has been given in the first PARI program line below. - _Wolfdieter Lang_, Feb 24 2009

%e G.f.: exp(-x)/(1-x) = (1 + 0*x)*(1 + 1*x^2/2!)*(1 + 2*x^3/3!)*(1 + 9*x^4/4!)*

%e (1 + 24*x^5/5!)*(1 + 130*x^6/6!)*...*(1 + a(n)*x^n/n!)*...

%e Recurrence: a(7) = -1 - (7*a(1)*a(6) + 21*a(2)*a(5) + 35 a(3)*a(4) + 105*a(1)*a(2)*a(4)) = -1 -(-910 + 504 + 630 - 945) = 720 = 6!. For the recurrence one has to use a(1)=-1. - _Wolfdieter Lang_, Feb 24 2009

%e G.f. = x^2 + 2*x^3 + 9*x^4 + 24*x^5 + 130*x^6 + 720*x^7 + 8505*x^8 + ...

%t a[n_] := a[n] = If[n < 4, Max[n-1, 0], (n-1)!*(1 + Sum[ k*(-a[k]/k!)^(n/k), {k, Most[Divisors[n]]}])]; Table[a[n], {n, 1, 21}] (* _Jean-François Alcover_, Jul 19 2012, after 1st PARI program *)

%t a[ n_]:= If[n<2, 0, a[n] = n! SeriesCoefficient[ Exp[-x]/((1-x) Product[ 1 + a[k] x^k/k!, {k, 2, n-1}]), {x, 0, n}]]; (* _Michael Somos_, Feb 23 2015 *)

%o (PARI) a(n)=if(n<4,max(n-1,0),(n-1)!*(1+sumdiv(n,k, if(k<n,k*(-a(k)/k!)^(n/k)))))

%o (PARI) /* As coefficients in product g.f.: */ a(n)=if(n<2,0,n!*polcoeff((exp(-x+x*O(x^n))/(1-x))/prod(k=0,n-1,1+a(k)*x^k/k! +x*O(x^n)),n)) \\ _Paul D. Hanna_, Feb 14 2008

%Y Cf. A137852, A156792.

%K nonn,easy,nice

%O 1,3

%A _Simon Plouffe_

%E More terms from _Michael Somos_, Oct 07 2001

%E Further terms from _Paul D. Hanna_, Feb 14 2008