login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006965
Number of directed trees with n nodes.
(Formerly M1677)
4
1, 2, 6, 25, 114, 591, 3298, 19532, 120687, 771373, 5061741, 33943662, 231751331, 1606587482, 11283944502, 80157645245, 575105238243, 4162624144308, 30365913761136, 223075674659696, 1649166676341180, 12262121068089094, 91649977839972636, 688288656744067230
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Quebec, 1992, Vol. 16, No. 1, 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
MAPLE
with(combstruct):B:=x->add(3*count([S, {B = Set(S), S = Prod(B, B, B, Z)}, unlabeled], size=i)*x^i, i=1..50); seq(coeff(B(x)-B(x)^2/2+B(x^2)/2, x, n)/3, n=1..30); # with Algolib (Pab Ter)
# second Maple program:
b:= proc(n) option remember; `if`(n<2, 3*n, (add(add(b(d)
*d, d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1))
end:
a:= n-> `if`(n=0, 1, b(n)-(add(b(k) *b(n-k), k=0..n)-
`if`(irem(n, 2)=0, b(n/2), 0))/2)/3:
seq(a(n), n=1..30); # Alois P. Heinz, Jun 03 2020
MATHEMATICA
b[n_] := b[n] = If[n < 2, 3 n, (Sum[Sum[b[d] d, {d, Divisors[j]}] b[n - j], {j, 1, n - 1}])/(n - 1)];
a[n_] := If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]/3;
Array[a, 30] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
CROSSREFS
Equals (1/3) A038060(n).
Row sums of A335362.
Sequence in context: A229042 A269484 A014277 * A202705 A058801 A321720
KEYWORD
nonn
AUTHOR
STATUS
approved