login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convert the last term from decimal to binary!
(Formerly M4814)
10

%I M4814 #34 Mar 12 2021 01:51:51

%S 3,11,1011,1111110011,1000010001110100011000101111011

%N Convert the last term from decimal to binary!

%C The next term (a(5)) has 100 digits. - _Harvey P. Dale_, Feb 28 2012

%C The number of digits of a(n) are 2, 4, 10, 31, 100, 330, 1093, 3628, 12049, 40023, 132951, 441651, 1467130, 4873698, 16190071, 53782249, 178660761, ... - _Robert G. Wilson v_, Jul 10 2013

%C log(a(n))/log(a(n-1)) = ~log_2(10) = A020862. - _Robert G. Wilson v_, Jul 10 2013

%D C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%t NestList[FromDigits[IntegerDigits[#,2]]&,11,4] (* _Harvey P. Dale_, Feb 28 2012 *)

%o (Python)

%o def agen(an):

%o while True: yield an; an = int(bin(an)[2:])

%o g = agen(3)

%o print([next(g) for i in range(5)]) # _Michael S. Branicky_, Mar 11 2021

%Y For initial terms 2 through 12 see A008559, A006938, A260025, A260024, A260026, A260027, A260028, A260029, A008559 (again), A006938 (again), A260030 respectively.

%K nonn,base

%O 1,1

%A _N. J. A. Sloane_

%E a(1)=3 added by _N. J. A. Sloane_, Jul 14 2015