login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of rooted tree numbers.
1

%I #15 Oct 07 2014 09:00:24

%S 1,2,5,14,42,131,420,1376,4589,15537,53293,184881,647752,2289215,

%T 8152147,29226618,105408688,382193502,1392377762,5094356032,

%U 18711122069,68965586862,255006331944,945662753514,3516281928159,13106923073426,48967229534156,183326438562982

%N Binomial transform of rooted tree numbers.

%H Alois P. Heinz, <a href="/A006930/b006930.txt">Table of n, a(n) for n = 0..600</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 1 + A051491 = 3.955765285651994974714..., c = 2.0132071688691451819... . - _Vaclav Kotesovec_, Aug 25 2014

%p with(numtheory):

%p b:= proc(n) option remember; local d, j; `if`(n<=1, n,

%p (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))

%p end:

%p a:= n-> add(b(k+1)*binomial(n,k), k=0..n):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 17 2013

%t b[n_] := b[n] = Module[{d, j}, If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]; a[n_] := Sum[b[k+1]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Oct 07 2014, translated from Maple *)

%Y Cf. A000081, A051491.

%K nonn

%O 0,2

%A _N. J. A. Sloane_.