Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1351 #52 Apr 20 2024 00:00:04
%S 1,2,5,8,17,24,46,64,107,147,242,302,488,629,922,1172,1745,2108,3104,
%T 3737,5232,6419,8988,10390,14552,17292,23160,27206,36975,41945,57058,
%U 65291,85895,99384,130443,145283,193554,218947,281860,316326,413322,454229,594048
%N Number of partitions of 2n with all subsums different from n.
%C Partitions of this type are also called non-biquanimous partitions. - _Gus Wiseman_, Apr 19 2024
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Fausto A. C. Cariboni, <a href="/A006827/b006827.txt">Table of n, a(n) for n = 1..140</a> (terms 1..89 from Alois P. Heinz)
%H P. Erdős, J. L. Nicolas and A. Sárközy, <a href="http://dx.doi.org/10.1016/0012-365X(89)90086-1">On the number of partitions of n without a given subsum (I)</a>, Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
%F a(n) = A000041(2*n) - A002219(n).
%F a(n) = A046663(2*n,n).
%e From _Gus Wiseman_, Apr 19 2024: (Start)
%e The a(1) = 1 through a(5) = 17 partitions (A = 10):
%e (2) (4) (6) (8) (A)
%e (31) (42) (53) (64)
%e (51) (62) (73)
%e (222) (71) (82)
%e (411) (332) (91)
%e (521) (433)
%e (611) (442)
%e (5111) (622)
%e (631)
%e (721)
%e (811)
%e (3331)
%e (4222)
%e (6211)
%e (7111)
%e (22222)
%e (61111)
%e (End)
%p b:= proc(n, i, s) option remember;
%p `if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
%p `if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
%p map(x-> [x, x-i][], s))), 0))))
%p end:
%p a:= n-> b(2*n, 2*n, {n}):
%p seq(a(n), n=1..25); # _Alois P. Heinz_, Jul 10 2012
%t b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* _Jean-François Alcover_, Nov 12 2013, after _Alois P. Heinz_ *)
%o (Python)
%o from itertools import combinations_with_replacement
%o from collections import Counter
%o from sympy import npartitions
%o from sympy.utilities.iterables import partitions
%o def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)),2)}) # _Chai Wah Wu_, Sep 20 2023
%Y The complement is counted by A002219, ranks A357976.
%Y Central diagonal of A046663.
%Y The strict case is A321142, even bisection of A371794 (odd A078408).
%Y This is the "bi-" version of A321451, ranks A321453.
%Y Column k = 0 of A367094.
%Y These partitions have Heinz numbers A371731.
%Y Even bisection of A371795 (odd A058695).
%Y A371783 counts k-quanimous partitions.
%Y Cf. A035470, A064914, A237258, A305551, A321452, A365543, A365663, A366320, A371736, A371782, A371792.
%K nonn,nice
%O 1,2
%A _N. J. A. Sloane_
%E More terms from _Don Reble_, Nov 03 2001
%E More terms from _Alois P. Heinz_, Jul 10 2012