login
Trails of length n on square lattice.
(Formerly M3450)
2

%I M3450 #28 May 12 2023 15:56:56

%S 1,4,12,36,108,316,916,2628,7500,21268,60092,169092,474924,1329188,

%T 3715244,10359636,28856252,80220244,222847804,618083972,1713283628,

%U 4742946484,13123882524,36274940740,100226653420,276669062116,763482430316,2105208491748,5803285527724

%N Trails of length n on square lattice.

%C A trail is a path which may cross itself but does not reuse an edge. This sequence counts directed paths on the square lattice.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrey Zabolotskiy, <a href="/A006817/b006817.txt">Table of n, a(n) for n = 0..31</a> (from Conway & Guttmann; terms 0..30 from Bert Dobbelaere)

%H A. R. Conway and A. J. Guttmann, <a href="https://doi.org/10.1088/0305-4470/26/7/013">Enumeration of self-avoiding trails on a square lattice using a transfer matrix technique</a>, J. Phys. A: Math. Gen., 26 (1993), 1535-1552; arXiv:<a href="https://arxiv.org/abs/hep-lat/9211063">hep-lat/9211063</a>, 1992.

%H A. J. Guttmann, <a href="https://doi.org/10.1088/0305-4470/18/4/009">Lattice trails II: numerical results</a>, J. Phys. A 22 (1989), 575-588.

%H A. Malakis, <a href="https://doi.org/10.1088/0305-4470/9/8/018">The trail problem on the square lattice</a>, J. Phys A 9 (8) (1976) p 1283. Table 1.

%Y Undirected trails-rotation and reflection are counted by A001997.

%Y Cf. A006818, A006819, A006851.

%K nonn,walk

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_, Jul 20 2001

%E More terms from _Bert Dobbelaere_, Jan 19 2019