login
Number of n-step anisotropic spirals on cubic lattice.
(Formerly M4163)
3

%I M4163 #23 Feb 03 2025 13:41:15

%S 1,6,24,90,324,1166,4138,14730,51992,183898,646980,2279702,8002976,

%T 28127418,98585096,345848306,1210704274,4241348770,14833284544,

%U 51907058582,181392476966,634197818374,2214804822718,7737946227490

%N Number of n-step anisotropic spirals on cubic lattice.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D G. Szekeres and A. J. Guttmann, Spiral self-avoiding walks on the triangular lattice, J. Phys. A 20 (1987), 481-493.

%H Miles Conway, <a href="/A006780/a006780.py.txt">Python3 program</a>

%H A. J. Guttmann and K. J. Wallace, <a href="https://doi.org/10.1088/0305-4470/18/16/010">On three-dimensional spiral anisotropic self-avoiding walks</a>, J. Phys. A 18 (1985), L1049-L1054, table I model A.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a006/A006780.java">Java program</a> (github)

%K nonn,more,changed

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _Sean A. Irvine_, Aug 29 2019