login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smith (or joke) numbers: composite numbers n such that sum of digits of n = sum of digits of prime factors of n (counted with multiplicity).
(Formerly M3582)
85

%I M3582 #98 Apr 03 2023 10:36:09

%S 4,22,27,58,85,94,121,166,202,265,274,319,346,355,378,382,391,438,454,

%T 483,517,526,535,562,576,588,627,634,636,645,648,654,663,666,690,706,

%U 728,729,762,778,825,852,861,895,913,915,922,958,985,1086,1111,1165,1219

%N Smith (or joke) numbers: composite numbers n such that sum of digits of n = sum of digits of prime factors of n (counted with multiplicity).

%C Of course primes also have this property, trivially.

%C a(133809) = 4937775 is the first Smith number historically: 4937775 = 3*5*5*65837 and 4+9+3+7+7+7+5 = 3+5+5+(6+5+8+3+7) = 42, Albert Wilansky coined the term Smith number when he noticed the defining property in the phone number of his brother-in-law Harold Smith: 493-7775.

%C There are 248483 7-digit Smith numbers, corresponding to US phone numbers without area codes (like 4937775). - _Charles R Greathouse IV_, May 19 2013

%C A007953(a(n)) = Sum_{k=1..A001222(a(n))} A007953(A027746(a(n),k)), and A066247(a(n))=1. - _Reinhard Zumkeller_, Dec 19 2011

%C 3^3, 3^6, 3^9, 3^27 are in the sequence. - _Sergey Pavlov_, Apr 01 2017

%C As mentioned by _Giovanni Resta_, there are no other terms of the form 3^t for 0 < t < 300000 and, probably, no other terms of such form for t >= 300000. It seems that, if there exists any other term of form 3^t with integer t, then t == 0 (mod 3) or, perhaps, t = {3^k; 2*3^k} where k is integer, k > 10. - _Sergey Pavlov_, Apr 03 2017

%D M. Gardner, Penrose Tiles to Trapdoor Ciphers. Freeman, NY, 1989, p. 300.

%D R. K. Guy, Unsolved Problems in the Theory of Numbers, Section B49.

%D C. A. Pickover, "A Brief History of Smith Numbers" in "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning", pp. 247-248, Oxford University Press, 2000.

%D J. E. Roberts, Lure of the Integers, pp. 269-270 MAA 1992.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D D. D. Spencer, Key Dates in Number Theory History, Camelot Pub. Co. FL, 1995, pp. 94.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 180.

%H T. D. Noe, <a href="/A006753/b006753.txt">Table of n, a(n) for n = 1..10000</a>

%H K. S. Brown's Mathpages, <a href="http://www.mathpages.com/home/kmath007/kmath007.htm">Smith Numbers and Rhonda Numbers</a>

%H C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=SmithNumber">Smith number</a>

%H P. J. Costello, <a href="https://web.archive.org/web/20020527191732/http://www.math.eku.edu/PJCostello/smith.htm">Smith Numbers</a>

%H M. Gardner, <a href="/A005130/a005130_1.pdf">Letter to N. J. A. Sloane</a>, Jun 20 1991.

%H Ely Golden, <a href="/A006753/a006753_1.sagews.txt">General program for generating Smith number sequences</a>

%H S. S. Gupta, <a href="http://www.shyamsundergupta.com/smith.htm">Smith Numbers</a>

%H T. Jason, <a href="http://everything2.net/index.pl?node_id=1104442&amp;displaytype=printable&amp;lastnode_id=1104442">Smith number</a>

%H Madras Math's Amazing Number Facts, <a href="http://www.madrasmaths.com/activities/number_facts/fact_42.html">Smith Numbers</a>

%H Sham Oltikar, and Keith Wayland, <a href="http://www.jstor.org/stable/2690265">Construction of Smith Numbers</a>, Mathematics Magazine, vol. 56(1), 1983, pp. 36-37.

%H C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.00008&amp;format=complete">Zentralblatt review</a>

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_107.htm">Problem 107: Consecutive Smith numbers</a>, The Prime Puzzles and Problems Connection.

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_108.htm">Problem 108: Methods for generating Smith numbers</a>, The Prime Puzzles and Problems Connection.

%H W. Schneider, <a href="http://web.archive.org/web/2004/www.wschnei.de/digit-related-numbers/smith-numbers.html">Smith Numbers</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmithNumber.html">Smith Number</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Smith_number">Smith number</a>

%H A. Wilansky, <a href="http://www.jstor.org/stable/3026531">Smith numbers</a>, Two-Year Coll. Math. J., 13 (1982), p. 21.

%H A. Witno, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Witno/witno6.html">A Family of Sequences Generating Smith Numbers</a>, J. Int. Seq. 16 (2013) #13.4.6

%e 58 = 2*29; sum of digits of 58 is 13, sum of digits of 2 + sum of digits of 29 = 2+11 is also 13.

%p q:= n-> not isprime(n) and (s-> s(n)=add(s(i[1])*i[2], i=

%p ifactors(n)[2]))(h-> add(i, i=convert(h, base, 10))):

%p select(q, [$1..2000])[]; # _Alois P. Heinz_, Apr 22 2021

%t fQ[n_] := !PrimeQ@ n && n>1 && Plus @@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]] }] & /@ FactorInteger@ n] == Plus @@ IntegerDigits@ n; Select[ Range@ 1200, fQ]

%o (Sage) is_A006753 = lambda n: n > 1 and not is_prime(n) and sum(n.digits()) == sum(sum(p.digits())*m for p,m in factor(n)) # _D. S. McNeil_, Dec 28 2010

%o (Haskell)

%o a006753 n = a006753_list !! (n-1)

%o a006753_list = [x | x <- a002808_list,

%o a007953 x == sum (map a007953 (a027746_row x))]

%o -- _Reinhard Zumkeller_, Dec 19 2011

%o (PARI) isA006753(n) = if(isprime(n), 0, my(f=factor(n)); sum(i=1,#f[,1], sumdigits(f[i,1])*f[i,2]) == sumdigits(n)); \\ _Charles R Greathouse IV_, Jan 03 2012; updated by _Max Alekseyev_, Oct 21 2016

%o (Python)

%o from sympy import factorint

%o def sd(n): return sum(map(int, str(n)))

%o def ok(n):

%o f = factorint(n)

%o return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f)

%o print(list(filter(ok, range(1220)))) # _Michael S. Branicky_, Apr 22 2021

%Y Cf. A002808, A007953, A019506, A050218, A050224, A050255, A098834-A098840, A103123-A103126, A104166-A104171, A104390, A104391, A202387, A202388.

%K nonn,base,nice,easy

%O 1,1

%A _N. J. A. Sloane_