login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.
(Formerly M2456)
14

%I M2456 #84 Feb 02 2024 07:48:00

%S 1,1,1,1,1,1,1,3,5,9,17,41,137,769,1925,7203,34081,227321,1737001,

%T 14736001,63232441,702617001,8873580481,122337693603,1705473647525,

%U 22511386506929,251582370867257,9254211194697641,215321535159114017

%N Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006723/b006723.txt">Table of n, a(n) for n=0..100</a>

%H R. H. Buchholz and R. L. Rathbun, <a href="http://www.jstor.org/stable/2974977">An infinite set of Heron triangles with two rational medians</a>, Amer. Math. Monthly, 104 (1997), 107-115.

%H Chang, Xiangke; Hu, Xingbiao, <a href="https://doi.org/10.1016/j.laa.2012.01.016">A conjecture based on Somos-4 sequence and its extension</a>, Linear Algebra Appl. 436, No. 11, 4285-4295 (2012).

%H S. Fomin and A. Zelevinsky, <a href="https://arxiv.org/abs/math/0104241">The Laurent phenomenon</a>, arXiv:math/0104241 [math.CO], 2001.

%H David Gale, <a href="http://dx.doi.org/10.1007/BF03024070">The strange and surprising saga of the Somos sequences</a>, Math. Intelligencer 13(1) (1991), pp. 40-42.

%H R. W. Gosper and Richard C. Schroeppel, <a href="https://arxiv.org/abs/math/0703470">Somos Sequence Near-Addition Formulas and Modular Theta Functions</a>, arXiv:math/0703470 [math.NT], 2007.

%H J. L. Malouf, <a href="http://dx.doi.org/10.1016/0012-365X(92)90714-Q">An integer sequence from a rational recursion</a>, Discr. Math. 110 (1992), 257-261.

%H J. Propp, <a href="http://faculty.uml.edu/jpropp/somos.html">The Somos Sequence Site</a>

%H R. M. Robinson, <a href="http://dx.doi.org/10.1090/S0002-9939-1992-1140672-5">Periodicity of Somos sequences</a>, Proc. Amer. Math. Soc., 116 (1992), 613-619.

%H Vladimir Shevelev and Peter J. C. Moses, <a href="https://arxiv.org/abs/1112.5715">On a sequence of polynomials with hypothetically integer coefficients</a>, arXiv preprint arXiv:1112.5715 [math.NT], 2011.

%H Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/somos7.html">Somos 7 Sequence</a>

%H Michael Somos, <a href="http://faculty.uml.edu/jpropp/somos/history.txt">Brief history of the Somos sequence problem</a>

%H Alex Stone, <a href="https://www.quantamagazine.org/the-astonishing-behavior-of-recursive-sequences-20231116/">The Astonishing Behavior of Recursive Sequences</a>, Quanta Magazine, Nov 16 2023, 13 pages.

%H A. van der Poorten, <a href="https://arxiv.org/abs/math/0608247">Hyperelliptic curves, continued fractions and Somos sequences</a>, arXiv:math/0608247 [math.NT], 2006.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SomosSequence.html">Somos Sequence.</a>

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%F a(6 - n) = a(n) for all n in Z.

%F a(n) = ((8-2*(-1)^n)*a(n-5)*a(n-3)-a(n-4)^2)/a(n-8). - _Bruno Langlois_, Aug 09 2016

%t RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1,a[n] == (a[n-1]a[n-6]+a[n-2]a[n-5]+a[n-3]a[n-4])/a[n-7]},a,{n,30}] (* _Harvey P. Dale_, Jan 19 2012 *)

%o (PARI) {a(n) = my(v); if( n<0, n = 6-n); if( n<7, 1, n++; v = vector(n, k, 1); for( k=8, n, v[k] = (v[k-1] * v[k-6] + v[k-2] * v[k-5] + v[k-3] * v[k-4]) / v[k-7]); v[n])};

%o (Haskell)

%o a006723 n = a006723_list !! n

%o a006723_list = [1,1,1,1,1,1,1] ++

%o zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006723_list

%o where b i = zipWith (*) (drop i a006723_list) (drop (7-i) a006723_list)

%o -- _Reinhard Zumkeller_, Jan 22 2012

%o (Python)

%o from gmpy2 import divexact

%o A006723 = [1,1,1,1,1,1,1]

%o for n in range(7,101):

%o ....A006723.append(divexact(A006723[n-1]*A006723[n-6]+A006723[n-2]*A006723[n-5]+A006723[n-3]*A006723[n-4],A006723[n-7]))

%o # _Chai Wah Wu_, Sep 01 2014

%o (Magma) I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + Self(n-2)*Self(n-5) + Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // _G. C. Greubel_, Feb 21 2018

%Y Cf. A006720, A006721, A006722, A048736.

%Y Cf. A078495.

%K nonn,easy,nice

%O 0,8

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Aug 22 2000