Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0735 #158 Sep 25 2024 11:23:47
%S 1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833,165713,1249441,9434290,
%T 68570323,1013908933,11548470571,142844426789,2279343327171,
%U 57760865728994,979023970244321,23510036246274433,771025645214210753
%N Somos-5 sequence: a(n) = (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
%C Using the addition formula for the Weierstrass sigma function it is simple to prove that the subsequence of even terms of a Somos-5 type sequence satisfy a 4th-order recurrence of Somos-4 type and similarly the odd subsequence satisfies the same 4th-order recurrence. - _Andrew Hone_, Aug 24 2004
%C log(a(n)) ~ 0.071626946 * n^2. (Hone)
%C The Brown link article gives interesting information about related sequences including recurrences and numerical approximations.
%C The n-th term is a divisor of the (n+k*(2*n-4))-th term for all integers n and k. - _Peter H van der Kamp_, May 18 2015
%C The elliptic curve y^2 + xy = x^3 + x^2 - 2x (LMFDB label 102.a1) has infinite order point P = (2, 2) and 2-torsion point T = (0, 0). Define d(n) = a(n+2). The x and y coordinates of nP + T have denominators d(n)^2 and d(n)^3. - _Michael Somos_, Oct 29 2022
%D Paul C. Kainen, Fibonacci in Somos-5 ..., Fib. Q., 60:4 (2022), 362-364.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A006721/b006721.txt">Table of n, a(n) for n=0..100</a>
%H K. S. Brown, <a href="http://www.mathpages.com/home/kmath162/kmath162.htm">A Quasi-Periodic Sequence</a>
%H R. H. Buchholz and R. L. Rathbun, <a href="http://www.jstor.org/stable/2974977">An infinite set of Heron triangles with two rational medians</a>, Amer. Math. Monthly, 104 (1997), 107-115.
%H Xiang-Ke Chang and Xing-Biao Hu, <a href="https://doi.org/10.1016/j.laa.2012.01.016">A conjecture based on Somos-4 sequence and its extension</a>, Linear Algebra Appl. 436, No. 11, 4285-4295 (2012).
%H Bryant Davis, Rebecca Kotsonis, and Jeremy Rouse, <a href="http://arxiv.org/abs/1507.05896">The density of primes dividing a term in the Somos-5 sequence</a>, arXiv:1507.05896 [math.NT], 2015.
%H Harini Desiraju and Brady Haran, <a href="https://www.youtube.com/watch?v=p-HN_ICaCyM">The Troublemaker Number</a>, Numberphile video (2022).
%H S. Fomin and A. Zelevinsky, <a href="https://arxiv.org/abs/math/0104241">The Laurent phenomenon</a>, arXiv:math/0104241 [math.CO], 2001.
%H David Gale, <a href="http://dx.doi.org/10.1007/BF03024070">The strange and surprising saga of the Somos sequences</a>, in Mathematical Entertainments, Math. Intelligencer 13(1) (1991), pp. 40-42.
%H R. W. Gosper and Richard C. Schroeppel, <a href="http://arxiv.org/abs/math/0703470">Somos Sequence Near-Addition Formulas and Modular Theta Functions</a>, arXiv:math/0703470 [math.NT]
%H J. W. E. Harrow and A. N. W. Hone, <a href="https://arxiv.org/abs/2409.00406">Casting more light in the shadows: dual Somos-5 sequences</a>, arXiv:2409.00406 [nlin.SI], 2024. See p. 2.
%H Andrew N. W. Hone, <a href="http://dx.doi.org/10.1112/S0024609304004163">Elliptic curves and quadratic recurrence sequences</a>, Bull. Lond. Math. Soc. 37 (2005) 161-171.
%H Andrew N. W. Hone, <a href="https://arxiv.org/abs/math/0501554">Sigma function solution of the initial value problem for Somos 5 sequences</a>, arXiv:math/0501554 [math.NT], 2005-2006.
%H Andrew N. W. Hone, <a href="https://arxiv.org/abs/2107.03197">Heron triangles with two rational median and Somos-5 sequences</a>, arXiv:2107.03197 [math.NT], 2022.
%H Andrew N. W. Hone, <a href="https://arxiv.org/abs/2401.05581">Heron triangles and the hunt for unicorns</a>, arXiv:2401.05581 [math.NT], 2024.
%H LMFDB, <a href="https://www.lmfdb.org/EllipticCurve/Q/102/a/1">Elliptic Curve 102.a1 (Cremona label 102a1)</a>
%H Xinrong Ma, <a href="https://doi.org/10.1016/j.disc.2009.07.012">Magic determinants of Somos sequences and theta functions</a>, Discrete Mathematics 310.1 (2010): 1-5.
%H J. L. Malouf, <a href="http://dx.doi.org/10.1016/0012-365X(92)90714-Q">An integer sequence from a rational recursion</a>, Discr. Math. 110 (1992), 257-261.
%H J. Propp, <a href="http://faculty.uml.edu/jpropp/somos.html">The Somos Sequence Site</a>
%H J. Propp, <a href="http://faculty.uml.edu/jpropp/reach/shirt.html">The 2002 REACH tee-shirt</a>
%H R. M. Robinson, <a href="http://dx.doi.org/10.1090/S0002-9939-1992-1140672-5">Periodicity of Somos sequences</a>, Proc. Amer. Math. Soc., 116 (1992), 613-619.
%H Matthew Christopher Russell, <a href="http://www.math.rutgers.edu/~zeilberg/Theses/MatthewRussellThesis.pdf">Using experimental mathematics to conjecture and prove theorems in the theory of partitions and commutative and non-commutative recurrences</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016; see <a href="https://pdfs.semanticscholar.org/fdeb/e20954dacb7ec7a24afe2cf491b951c5a28d.pdf">also</a>.
%H Vladimir Shevelev and Peter J. C. Moses, <a href="https://arxiv.org/abs/1112.5715">On a sequence of polynomials with hypothetically integer coefficients</a>, arXiv preprint arXiv:1112.5715 [math.NT], 2011.
%H Michael Somos, <a href="https://grail.eecs.csuohio.edu/~somos/somos6.html">Somos 6 Sequence</a>
%H Michael Somos, <a href="http://faculty.uml.edu/jpropp/somos/history.txt">Brief history of the Somos sequence problem</a>
%H D. E. Speyer, <a href="http://arXiv.org/abs/math.CO/0402452">Perfect matchings and the octahedral recurrence</a>, arXiv:math/0402452 [math.CO], 2004.
%H Alex Stone, <a href="https://www.quantamagazine.org/the-astonishing-behavior-of-recursive-sequences-20231116/">The Astonishing Behavior of Recursive Sequences</a>, Quanta Magazine, Nov 16 2023, 13 pages.
%H Peter H. van der Kamp, <a href="http://arxiv.org/abs/1505.00194">Somos-4 and Somos-5 are arithmetic divisibility sequences</a>, arXiv:1505.00194 [math.NT], 2015.
%H A. J. van der Poorten, <a href="https://arxiv.org/abs/math/0403225">Elliptic curves and continued fractions</a>, arXiv:math/0403225 [math.NT], 2004.
%H A. J. van der Poorten, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Poorten/vdp40.html">Elliptic curves and continued fractions</a>, J. Int. Sequences, Volume 8, no. 2 (2005), article 05.2.5.
%H A. J. van der Poorten, <a href="https://arxiv.org/abs/math/0412293">Recurrence relations for elliptic sequences: : every Somos 4 is a Somos k</a>, arXiv:math/0412293 [math.NT], 2004.
%H A. J. van der Poorten, <a href="https://arxiv.org/abs/math/0608247">Hyperelliptic curves, continued fractions and Somos sequences</a>, arXiv:math/0608247 [math.NT], 2006.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SomosSequence.html">Somos Sequence.</a>
%H D. Zagier, <a href="http://www-groups.mcs.st-andrews.ac.uk/~john/Zagier/Problems.html">Problems posed at the St Andrews Colloquium, 1996</a>
%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>
%F Comments from _Andrew Hone_, Aug 24 2004: "Both the even terms b(n)=a(2n) and odd terms b(n)=a(2n+1) satisfy the fourth-order recurrence b(n)=(b(n-1)*b(n-3)+8*b(n-2)^2)/b(n-4).
%F "Hence the general formula is a(2n)=A*B^n*sigma(c+n*k)/sigma(k)^(n^2), a(2n+1)=D*E^n*sigma(f+n*k)/sigma(k)^(n^2) where sigma is the Weierstrass sigma function associated to the elliptic curve y^2=4*x^3-(121/12)*x+845/216 (this is birationally equivalent to the minimal model V^2+U*V+6*V=U^3+7*U^2+12*U given by van der Poorten).
%F "The real/imaginary half-periods of the curve are w1=1.181965956, w3=0.973928783*I and the constants are A=0.142427718-1.037985022*I, B=0.341936209+0.389300717*I, c=0.163392411+w3, k=1.018573545, D=-0.363554228-0.803200610*I, E=0.644801269+0.734118205*I, f=c+k/2-w1 all to 9 decimal places."
%F a(4 - n) = a(n). a(n+2) * a(n-2) = 2 * a(n+1) * a(n-1) - a(n)^2 if n is even. a(n+2) * a(n-2) = 3 * a(n+1) * a(n-1) - a(n)^2 if n is odd.
%p for n from 0 to 4 do a[n]:= 1 od:
%p for n from 5 to 50 do a[n]:=(a[n-1] * a[n-4] + a[n-2] * a[n-3]) / a[n-5] od:
%p seq(a[i],i=0..50); # _Robert Israel_, May 19 2015
%t a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = (a[n - 1] a[n - 4] + a[n - 2] a[n - 3])/a[n - 5]; Array[a, 27, 0] (* _Robert G. Wilson v_, Aug 15 2010 *)
%t a[ n_] := If[ Abs [n - 2] < 3, 1, If[ n < 0, a[4 - n], a[n] = (a[n - 1] a[n - 4] + a[n - 2] a[n - 3]) / a[n - 5]]]; (* _Michael Somos_, Jul 15 2011 *)
%t RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==1,a[n]==(a[n-1]a[n-4]+ a[n-2]a[n-3])/a[n-5]},a,{n,30}] (* _Harvey P. Dale_, Dec 25 2011 *)
%o (PARI) {a(n) = if( abs(n-2) < 3, 1, if( n<0, a(4-n), (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5)))}; /* _Michael Somos_, Jul 15 2011 */
%o (PARI) {a(n) = my(E = ellinit([1, 1, 0, -2, 0]), P = [2, 2], T = [0, 0]); if(n == 2, 1, n = abs(n-2); sqrtint(denominator(elladd(E, T, ellmul(E, P, n))[1])))}; /* _Michael Somos_, Oct 29 2022 */
%o (Haskell)
%o a006721 n = a006721_list !! n
%o a006721_list = [1,1,1,1,1] ++
%o zipWith div (foldr1 (zipWith (+)) (map b [1..2])) a006721_list
%o where b i = zipWith (*) (drop i a006721_list) (drop (5-i) a006721_list)
%o -- _Reinhard Zumkeller_, Jan 22 2012
%o (Python)
%o from gmpy2 import divexact
%o A006721 = [1,1,1,1,1]
%o for n in range(5,1001):
%o A006721.append(int(divexact(A006721[n-1]*A006721[n-4]+A006721[n-2]*A006721[n-3], A006721[n-5]))) # _Chai Wah Wu_, Aug 15 2014
%o (Magma) I:=[1,1,1,1,1]; [n le 5 select I[n] else (Self(n-1) * Self(n-4) + Self(n-2) * Self(n-3)) div Self(n-5): n in [1..30]]; // _Vincenzo Librandi_, May 18 2015
%Y Cf. A006720, A006722, A006723, A048736.
%K easy,nonn,nice
%O 0,6
%A _N. J. A. Sloane_
%E a(26)-a(27) from _Robert G. Wilson v_, Aug 15 2010
%E Definition corrected by _Chai Wah Wu_, Aug 15 2014