login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-edge-colored trivalent graphs with 2n labeled nodes.
(Formerly M4311)
6

%I M4311 #25 Dec 18 2017 22:44:55

%S 6,480,197820,150474240,208857587400,471804812519040,

%T 1625459273858019600,8112729590064978278400,

%U 56342429224416522460072800,527075322501595757416502976000,6466573585901882433727764077860800,101749747195531624711768653503416320000

%N Number of 3-edge-colored trivalent graphs with 2n labeled nodes.

%D R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrew Howroyd, <a href="/A006712/b006712.txt">Table of n, a(n) for n = 2..50</a>

%H Sean A. Irvine, <a href="/A006712/a006712.pdf">Illustration of initial terms</a>

%H R. C. Read, <a href="/A002831/a002831.pdf">Letter to N. J. A. Sloane, Feb 04 1971</a> (gives initial terms of this sequence)

%o (PARI)

%o dpermcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=2*t*k;s+=2*t); s!/m}

%o S(n,x)={vector(n, n, if(n>1, sum(k=0, n, binomial(2*n-k,k)*2*n/(2*n-k)*x^k), 0))}

%o q(n,s)={my(t=0); if(n>1, forpart(p=n, t+=dpermcount(p)*prod(i=1, #p, s[p[i]]), [2,n])); t}

%o a(n)={my(p=q(n,S(n,x))); sum(i=0, poldegree(p), polcoeff(p,n-i)*(-1)^(n-i)*(2*i)!/(2^i*i!))} \\ _Andrew Howroyd_, Dec 18 2017

%Y Cf. A006713 (for connected cases), A248361 (for the incorrect values). See also A002830, A002831, A005638.

%K nonn

%O 2,1

%A _N. J. A. Sloane_

%E a(5)-a(6) corrected and a(7)-a(10) from _Sean A. Irvine_, Oct 05 2014

%E Terms a(11) and beyond from _Andrew Howroyd_, Dec 18 2017