The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006710 Expansion of eta(q^10)^12/(eta(q^2)^4*eta(q^5)^8) in powers of q. (Formerly M3190) 0
 1, 0, 4, 0, 14, 8, 40, 32, 105, 112, 284, 320, 702, 840, 1688, 2112, 3860, 4976, 8540, 11264, 18424, 24480, 38584, 51520, 78901, 105648, 157600, 211136, 308310, 412872, 592224, 791040, 1117441, 1488160, 2074924, 2754048, 3794660, 5018408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,3 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Morris Newman, Construction and application of a class of modular functions (II). Proc. London Math. Soc. (3) 9 1959 373-387. MR0107629 (21 #6354) Morris Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible] FORMULA Euler transform of period 10 sequence [0, 4, 0, 4, 8, 4, 0, 4, 0, 0, ...]. - Michael Somos, Nov 10 2005 EXAMPLE q^3 + 4*q^5 + 14*q^7 + 8*q^8 + 40*q^9 + 32*q^10 + 105*q^11 + 112*q^12 + ... MATHEMATICA QP = QPochhammer; s = QP[q^10]^12/(QP[q^2]^4*QP[q^5]^8) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *) PROG (PARI) {a(n)=local(A); if(n<3, 0, n-=3; A=x*O(x^n); polcoeff( eta(x^10+A)^12/eta(x^2+A)^4/eta(x^5+A)^8, n))} /* Michael Somos, Nov 10 2005 */ CROSSREFS Sequence in context: A117786 A117788 A233398 * A141150 A081162 A095367 Adjacent sequences:  A006707 A006708 A006709 * A006711 A006712 A006713 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 10:26 EST 2020. Contains 338612 sequences. (Running on oeis4.)