login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006710
Expansion of eta(q^10)^12/(eta(q^2)^4*eta(q^5)^8) in powers of q.
(Formerly M3190)
0
1, 0, 4, 0, 14, 8, 40, 32, 105, 112, 284, 320, 702, 840, 1688, 2112, 3860, 4976, 8540, 11264, 18424, 24480, 38584, 51520, 78901, 105648, 157600, 211136, 308310, 412872, 592224, 791040, 1117441, 1488160, 2074924, 2754048, 3794660, 5018408
OFFSET
3,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Morris Newman, Construction and application of a class of modular functions (II). Proc. London Math. Soc. (3) 9 1959 373-387. MR0107629 (21 #6354)
Morris Newman, Construction and application of a class of modular functions, II, Proc. London Math. Soc. (3) 9 1959 373-387. [Annotated scanned copy, barely legible]
FORMULA
Euler transform of period 10 sequence [0, 4, 0, 4, 8, 4, 0, 4, 0, 0, ...]. - Michael Somos, Nov 10 2005
EXAMPLE
q^3 + 4*q^5 + 14*q^7 + 8*q^8 + 40*q^9 + 32*q^10 + 105*q^11 + 112*q^12 + ...
MATHEMATICA
QP = QPochhammer; s = QP[q^10]^12/(QP[q^2]^4*QP[q^5]^8) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n)=local(A); if(n<3, 0, n-=3; A=x*O(x^n); polcoeff( eta(x^10+A)^12/eta(x^2+A)^4/eta(x^5+A)^8, n))} /* Michael Somos, Nov 10 2005 */
CROSSREFS
Sequence in context: A117786 A117788 A233398 * A141150 A081162 A095367
KEYWORD
nonn,easy
STATUS
approved