login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of paths through an array.
(Formerly M2079)
8

%I M2079 #23 Dec 18 2021 22:20:31

%S 0,0,2,15,104,770,6264,56196,554112,5973264,69998400,886897440,

%T 12089295360,176484597120,2748022986240,45472329504000,

%U 796983880089600,14751208762214400,287543058350284800

%N Number of paths through an array.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006675/b006675.txt">Table of n, a(n) for n=0..100</a>

%H A. M. Khidr and B. S. El-Desouky, <a href="http://dx.doi.org/10.1016/S0195-6698(84)80018-9">A symmetric sum involving the Stirling numbers of the first kind</a>, European J. Combin., 5 (1984), 51-54.

%F a(n) = n*n! * (H(n) - 1) where H(n) = Sum_{k=1..n} 1/k.

%F E.g.f. A(x) = x*(1-x)^-2 * (-log(1-x)).

%F a(n) = A001705(n) - A000254(n). - _Peter Bala_, Feb 12 2019

%e x*(1-x)^-2 * (-log(1-x)) = x^2 + (5/2)*x^3 + (13/3)*x^4 + (77/12)*x^5 + ...

%t a[n_] := n*n!*(HarmonicNumber[n]-1); Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Nov 28 2011 *)

%Y Cf. A000254, A001705.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_

%E More terms from Joe Keane (jgk(AT)jgk.org)