login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exponentiation of g.f. for Pell numbers.
1

%I #10 Jun 15 2017 02:17:08

%S 0,1,2,8,32,159,882,5475,37256,276004,2207944,18949677,173475876,

%T 1685805913,17319275430,187443865596,2130493441472,25360318907075,

%U 315370749394134,4088067189914051,55128639891893220,771992274220462744,11207495397779852000

%N Exponentiation of g.f. for Pell numbers.

%F a(-1) = 1, a(n) = Sum_{k=0..n} binomial(n, k) * A000129(k) * a(n-k-1). - _Sean A. Irvine_, Jun 11 2017

%o (PARI) alias(A006669_vec,a6669); a6669=[]; A006669(n)={n<1&&return(-n); if(n>#a6669,a6669=concat(a6669,vector(n-#a6669)),a6669[n]&&return(a6669[n])); a6669[n]=sum(k=0,n,binomial(n, k)*A000129(k)*A006669(n-k-1))} \\ use e.g. A000129=n->imag((quadgen(8)+1)^n). - _M. F. Hasler_, Jun 15 2017

%Y Cf. A000129.

%K nonn

%O 0,3

%A _N. J. A. Sloane_.