login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006641 Class number of forms with discriminant -A003657(n), or equivalently class number of imaginary quadratic field with discriminant -A003657(n).
(Formerly M0112)
4
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Eric Weisstein's World of Mathematics, Class Number
MATHEMATICA
FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *);
NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]
PROG
(PARI) for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018
(Sage) [1] + [QuadraticField(-n, 'a').class_number() for n in (0..200) if is_fundamental_discriminant(-n) and not is_square(n)] # G. C. Greubel, Mar 01 2019
CROSSREFS
Cf. A003657.
Sequence in context: A012265 A339765 A268835 * A191408 A115756 A067731
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:37 EST 2023. Contains 367717 sequences. (Running on oeis4.)